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New Capabilities — 2022

The table below lists the new capabilities in the CANDE-2022 program that do not exist in the CANDE-2007
/2011program distributed at the TRB website. The theoretical formulation and input instructions for each new capability

are documented in the new CANDE-2022 manuals as identified in the last two columns of the table below.

Description of new CANDE capabilities since TRB version

User Manual input,
Chapter 5,

Section number
and (line tag)

Solution and
Formulation
Manual, Section
number

CONRIB pipe type. CONRIB has been added to CANDE’s pipe-
type library that provides the capability of modeling rib-shaped
reinforced/concrete cross-sections as well as standard rectangular
cross sections. Moreover, the concrete constitutive model has been
extended to include the simulation of fiber reinforced concrete.

5.3.2 (A-2)
and
5.4.5 (B-1 to B-6)

2.6

CONTUBE pipe type. This special pipe type provides the
capability of modeling circular shaped concrete cross sections
encased in fiber-reinforced plastic (FRP) tubes spaced at uniform
distances.

5.3.2 (A-2)
and
5.4.6 (B-1 to B-6)

2.7

Link elements with death option. Two simple options are, (1)
connect any two nodes with a pinned connection; or, (2) connect
two beam nodes with a fixed-moment connection. The link-element
death option is an extremely useful capability allowing the removal
of any link element and its forces at any specified load step.

5.5.6.4 (C-4)

4.9

Deeply corrugated steel structures. Updated steel pipe type to
accommodate the recently adopted AASHTO requirement for a
combined moment-thrust design criterion that applies to deeply
corrugated steel structures as well a new AASHTO equation to
predict the global buckling resistance. These new design criteria
may be activated at the user’s discretion.

5.5.4.1 (B-1)
and
5.5.42 (B-2)

222

Plastic pipe type variable profile properties. The plastic pipe
subroutine has been revised to allow variable profile geometries
around the structure. This applies to all types of plastic including
HDPE, PVC, and PP. Useful for analyzing storm-water chambers.

5.4.3.4 (B-3, B3b)

243

Mohr/Coulomb _plasticity model. The classical Mohr/Coulomb
elastic-perfectly plastic model is now included in the suite of
available constitutive models that may be assigned to continuum
elements to describe soil behavior. Up to five material parameters
are required to define the model (E, v, ¢, ¢ and y for non-associative
flow rule). Also, the user has control of the tension cut-off stress
level with improved convergence algorithms.

5.6.9 (D-2)

3.7
(3.8)

Modified Duncan/Selig soil model. The new modified
Duncan/Selig model produces permanent deformations upon
unloading similar to advanced plasticity models. No new material
parameters are introduced into the new formulation; thus, the
existing data base of Duncan/Selig parameters remains valid for the
modified formulation. The user has the option to use either the
Original or Modified version.

5.6.4.1 (D-2)

3.58 10 3.59
(3.8)

Continuous Load Scaling (CLS). A new improved procedure for
simulating longitudianal load spreading and 3D stiffness effects
resulting from 2D modeling of live loads. CLS provides a superior
alternative to the traditional method or reducing surface loads (RSL)
to approximately account for longtudinal effects.

5.5.6.2 (C-2)
and
5.5.6.3 (C-2b)

8.1.1to 8.1.5

vii




Composite Link Element. The composite link element is used to
combine two colinear beam element groups to react as a composite

bending unit as if the two beam groups are welded together along 5.5.6.6 (C-4) 4.8
the common interface. Or, at the user’ discretion, a reduction factor 5.6.8 (D-2)

may be specified to simulate an interface condition somewhere

between fully composite and simple tandem action.

Full benefit of pavements for load rating. It is well known that

inserting a stiff pavement over a 2D soil-culvert model will

significantly reduce the culvert’s structural distress from live loads.

However, this is only the in-plane portion of the actual full benefits 5.5.6.4 (C-2¢) 8.1.8
provided by pavements. There is also an out-of-plane load spreading

benefit that can be accurately simulated in CANDE using the | See also CANDE

revised load spreading theory called AAMP-6*, which produces Tool Box —

more realistic load rating factors. Option 3

viii
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1 SOLUTION LEVELS AND ASSUMPTIONS

This document focuses on the engineering mechanics and methods that lie behind the capabilities in CANDE-2022. Each
chapter is essentially a stand-alone reference that describes the theory and engineering approximations used for the
solution methods and nonlinear models employed in the program. The reader is referred to CANDE-2022 User Manual
and Guideline for an overall understanding of CANDE capabilities and architecture from a user’s perspective.

Two distinct solution methods are contained in CANDE. The first is called Level land is an extension of a closed-form
elasticity solution by Burns and Richard (Reference 7). The second is a finite element methodology modified and
extended from Herrmann (Reference 8). Input for the finite element method has two input options called Level 2 and
Level 3. Level 2 offers a completely automated mesh generation scheme but it is restricted to basic culvert shapes and
symmetric installations, whereas Level 3 is virtually unrestricted in modeling capability, but requires the user to define
the mesh topology.

Fundamental to both the closed form solution and the finite element methodology is the assumption of plane strain
geometry, two-dimensional loading, and real-time independence. Naturally, the elasticity solution is more restrictive than
the finite element solutions for Levels 2 and 3. Detailed capabilities and restrictions of the solution methods are discussed
in the following sections.

1.1 Elasticity Solution

The elasticity formulation provides an exact solution for an elastic cylindrical conduit encased in an isotropic,
homogeneous, infinite, elastic medium (soil) with a uniformly distributed pressure acting on horizontal planes at an
infinite distance. Thin-shell theory is assumed for the conduit, and continuum elastic theory is employed for the
surrounding infinite medium. The conduit-medium interface is modeled with a choice of two boundary conditions:
bonded interface, where both normal and tangential forces are transmitted across the interface, and frictionless interface,
where only normal forces are transmitted across the interface. Table 1.1-1 identifies the parameters that describe the
idealized boundary value problem and summarizes the elasticity solutions of key structural responses for the two interface
assumptions. Key structural responses, including radial and tangential soil pressure on conduit, radial and tangential
displacements of conduit wall, along with moment, thrust and shear resultants are given as a function of the angle theta
measured counterclockwise from the springline. The solutions in Table 1.1-1 are expressed in terms of the dimensionless
parameters alpha and beta. Alpha is a measure of the conduit’s hoop stiffness relative to the soil’s ability to resist uniform
compression, and beta is a measure of the conduits bending stiffness relative to the soil’s ability to resist ovaling
deformation. The expressions in Table 1.1-1 are developed in References 9 and 10.

1.1.1 Conceptual model

At first encounter, the applicability of the infinite regions described above to model culvert systems with finite burial
depths may seem questionable. However, it has been shown that the interaction between conduit and medium (or pipe
and soil) occurs primarily within a three-radius area of the pipe center. Beyond this area, the soil response is practically
unaffected by the pipe inclusion for overburden loading. Therefore, the pipe-soil system can be visualized with the finite
boundaries and overburden loading as shown in Figure 7.1.1. In this representation, P, is the equivalent overburden
pressure of the fill soil above the pipe given by P, = yH, where the parameters are identified in the figure. The elasticity
solution becomes progressively less valid when H, the depth of cover, is less than 3R and should not be used for cover
depths less than 2R.
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Table 1.1.1-1

CANDE-2022 Solution Methods and Formulations

Elasticity parameters and solutions for bonded and frictionless interfaces.

Elasticity Solution Parameters

Soil Properties
Py = Overburden pressure

G = Shear modulus
K = Lateral pressure coeff.

K =w/(1- p), where p
is Poisson ratio of soil

Dimensionless Parameters
0 = Angle in polar coord.

Pipe Properties
R = Average radius
A = Wall thrust area

per unit length o =EA/(2GR)
I = Wall moment of inertia (Relative hoop stiffness)
per unit length

B = EI/(2GR?)
(Relative bend stiffness)

E = Young’s modulus in
plane strain form
E = Epipe/(1- Hpipe”)

Bonded Interface: Structural Response Solutions

Structural Response

Common
Factor

Bonded Interface — Expression to be multiplied by common factor

Denominator term: D = (1+K) + 3(5-K)p + (3+K)a + 12(3-K)af

Radial pressure on pipe | P,

W/(1+a) — {(1-K)(2a + 18p + 240B)/D}cos20

Tangential pressure on | P,
pipe

0 + {(I-K)(do + 240p)/D}sin20

per unit length

Radial displacement of | P, R/(2G) 1/(1+a) — {(1-K)(2 +40)/D}cos260

pipe

Tangential displacement | P, R/(2G) 0 + {(1-K)(2 + 20 + 6B)/D}sin26

of pipe

Moment in pipe wall per | P,R? B/(1+a) + {(1-K)(6B + 12ap)/D}cos26

unit length

Thrust force in pipe wall | PR a/(1+a) + {(1-K)(2a + 6B + 240f)/D}cos20
Per unit length

Shear force in pipe wall | P, R 0 - {(1-K)(12B + 24ap)/D}sin20

Frictionless Interface: Structural Response Solutions

Structural Response

Common
Factor

Denominator term: D = (1+K) + 3(5-K)B

per unit length

Radial pressure on pipe | P, o/(1+ o) — {(1-K)(18B )/D}cos26
Tangential pressure on | P, 0.0

pipe

Radial displacement of | P, R/(2G) 1/(1+a) — {(1-K)2/D}cos26
pipe

Tangential displacement | P, R/(2G) 0 + {(1-K)/D}sin26

of pipe

Moment in pipe wall per | P, R? B/(1+a) + {(1-K)(6B)/D}cos20
unit length

Thrust force in pipe wall | PR a/(1+a) + {(1-K)(6B)/D}cos20
Per unit length

Shear force in pipe wall | P, R 0 - {(1-K)(12B)/D}sin26

1-2
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Figure 1.1.1-1 Conceptual view of elasticity solution with finite boundaries.
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1.1.2 Nonlinear aspects

Although Level 1 is based on a linear elasticity solution, a fair degree on nonlinear modeling is achieved for both soil
and pipe in the following manner. First the overburden pressure, P,, may be divided into “n” load increments, AP;, for i
=1 to n, and each load increment is applied in a series of load steps. During each load step the material properties of the
soil may be redefined in accordance with current overburden pressure. The structural responses as presented in Table
1.1-1, with P, replaced by AP;, are summed in a running total thereby providing a load-deformation history record. The

concept of overburden-dependent soil properties is elaborated in a later chapter on soil models.

With regard to nonlinear behavior of the pipe, each pipe type model (discussed later) can create changes in the effective
bending stiffness EI and the effective hoop stiffness EA at each point around the pipe periphery. These modified
properties are used directly to predict stress and strain at each pipe point based on the moment, thrust and shear at that
point. However, an average value of the modified properties is used in the closed-form equations to predict the primary

unknowns (displacements, moment, thrust, and shear) at each point on the pipe periphery.
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1.1.3 Utility of Level 1

The Level 1 approach does not have the versatility and generality of the Level 2 and 3 counterparts. Nonetheless its
efficiency and applicability particularly for design is quite remarkable. From a design viewpoint, the exact nature of the
soil system, loading and boundary conditions may not be known with enough certainty to warrant a finite element
solution. Thus, the simplifying assumptions of Level 1 are often commensurate with knowledge of the design problem.
It follows that the simple data preparation and quick computer time make Level 1 an attractive and powerful design tool
for routine applications for deep burial loading.

1.2 Finite Element Methodology
As previously mentioned, Level 2 and Level 3 share a common finite element solution program and differ only with

respect to the mode of input: automatic or user-defined. Although the development and formulation of the finite element
method is well established in the literature, an overview will be given herein as it applies to culvert installations.

A static, displacement-based finite element formulation is developed based on incremental virtual work. Incremental
virtual work is ideally suited for characterizing buried structures problems because the load may be applied in a series of
steps representing increments of overburden pressure, temporary construction loading and live loads from vehicles. In
the case of culvert-soil systems, the incremental approach takes on a larger meaning than just incremental load steps. To
wit, not only the load, but also the structural system may be assembled in increments. This process is termed the
"incremental construction" technique and is the mathematical analogue of the physical process of constructing the soil
system in a series of compacted layers or lifts. The structural predictions from an incremented system are more realistic
than an equivalent monolith system. Another advantage of the incremental virtual work formulation is the relative ease
of incorporating and solving various nonlinear models, which are discussed throughout this document.

For a general structural-continuum system, incremental virtual work may be expressed in matrix notation as:

j seTAcdV = j SuTAtdS + j SuTAfdV Equation 1-1
\Y% S \%

Where, = stress vector

(&)
€ = strain vector

u = displacement vector

T = surface-traction vector

f = body-force vector

0X = small virtual variation of any vector x, O is an operator

AX =X,,,- X, , incremental change in any vector x from load step i to i+1, A is an operator
S = surface area of traction loads at load step i + 1

V = volume of structural system at load step i + 1

The physics behind the above incremental virtual work statement is as follows. We assume that the structural system is
in equilibrium at load step i, and we are in the process of applying incremental loads to reach load step i + 1. With this
understanding, Equation 1-1 states, "The increment of internal virtual-strain-energy is equal to the increment of external
virtual work of body and traction loads as the system undergoes a virtual movement compatible with the kinematical
constraints of the system."

To express the virtual work statement in a displacement formulation, the stress vector is expressed in terms of strains by
using an incremental constitutive relationship, symbolized as;

Ac =CAeg Equation 1-2
Where, C is the constitutive function (matrix) that relates stress and strain increments from load step i to load step i + 1.
In general, the coefficients may be nonlinear and dependent on the total stress and strain history.

1-4
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Next, the strain increments are expressed in terms of displacement increments as;

Ae = AQ(u) = Q(Au) Equation 1-3
where, Q is an operator matrix composed of partial derivatives. For small-deformation theory, the operator matrix
contains linear operations so that QQ is commutative with A and & operators. In a later chapter, the strain-displacement
operator is extended to include large deformations, however for present purposes small-deformation theory is assumed.

Using the above relationships, the incremental virtual work may be expressed in terms of displacement fields over the
entire domain as;

[Q@Bw'cQAwdV = [su"AtdS + [u’Af dV Equation 1-4
\' S \'

The components of C and Q are dependent on element type, material behavior, and kinematical assumptions. Later, a

nonlinear form of the Q operator is used to formulate large deformation analysis. The specific forms will be developed

in subsequent chapters, for now, the concern is with the general formulation.

At this juncture, the finite element approximation is introduced by subdividing the domain V into a discrete set of
elements interconnected at common nodal points. The unknown displacement fields within each element are
approximated with prescribed functions such that continuity is maintained at the nodes and along the boundaries between
elements. The assemblage of elements and nodes is termed the finite element mesh or topology.

The unknown displacement fields within each element are approximated by specified interpolation functions with
unknown nodal-point displacements values, symbolically expressed as;

u, =Nu, Equation 1-5

e

where, = displacement vector-field within element

ue
N = matrix of prescribed interpolation functions (spatial variables)
ue

= nodal-point displacement vector (unknown degrees of freedom)

The subscript “e” implies the above relationship holds within a given element. The form of the interpolation matrix and
nodal displacement vector is dependent on element type.

1.2.1 Element types

The heart of any finite element formulation is the description of the elements themselves. The basic element types
employed in the CANDE program are described below:

Quadrilateral and triangular elements: for in-situ soil, bedding material, fill soil, pavement, etc.
Interface element: for interfaces such as between pipe and soil.

Link element: for special nodal connections along with death option.

Beam-column element: for culvert structure like pipes, boxes, arches, etc.

The quadrilateral element is a nonconforming element developed by Herrmann (Reference 11) that has superior qualities
in all basic deformation modes. The quadrilateral is composed of two triangles with complete quadratic interpolation
functions initially specified within each triangle. Upon applying appropriate constraints and static condensation
procedures a four-node quadrilateral with an 8 x 8 stiffness matrix is formed, wherein each node has two degrees of
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freedom representing horizontal and vertical displacements. Associated with the quadrilateral/triangle element are five
choices for material characterization: (1) linear elastic, isotropic or anisotropic; (2) incremental elastic, dependent on
overburden pressure; (3) hyperbolic soil models by Duncan and Duncan & Selig, (4) variable modulus soil model by
Hardin, and (5) plasticity model based on Mohr-Coulomb formulation. Specific derivations of the quadrilateral/triangular
element are given in Section 7.3 in conjunction with the constitutive models for soil.

The interface clement allows consideration of two subassemblies meeting at a common interface such that under loading
the subassemblies may slip relative to each other with Coulomb friction, or separate, or re-bond. A natural application of
this element is simulating the pipe-soil interface, other applications include trench soil-to-in-situ soil interface. The
interface element is composed of two nodes, each associated with one subassembly and initially meeting at a common
contact point. Each contact node has two degrees of freedom, horizontal and vertical displacement. In addition, a third
node is assigned to the "interior" of the contact point to represent normal and tangential interface forces. The three nodes
produce a 6 x 6 element "stiffness" matrix in a mixed formulation. Actually, the element stiffness is a set of constraint
equations with Lagrange multipliers. Constraint equations impose conditions on normal and tangential displacements,
and Lagrange multipliers are interface forces. The interface element derivation is presented in Chapter 4.

The simple link elements, like the interface element, is formulated with constraint equations that forces any two nodes
to deform with same the translational degrees of freedom like a pinned connection, or with same translational and
rotational degrees of freedom like a fixed moment connection. The composite link element are special constraint elements
to join to separate beam-element groups into composite bending behavior. All link element includes a death option that
permits modeling the removal of temporary supports, simulating the loss of culvert material by erosion, creation of a void
in the soil, and soil excavation. The link element derivation is presented in the last portion of Chapter 4.

Lastly, the beam-column element is the familiar structural-matrix element for two-dimensional bending and axial
deformation. It is defined by two nodes with three degrees of freedom per node, horizontal and vertical displacement and
a rotation. Bending deformation is approximated by a cubic interpolation function and axial deformation is represented
by a linear interpolation function. The beam-column element derivation employs a general nonlinear stress-strain model
that is specialized to the material behavior of different pipe types. Specifically, elastic-plastic behavior for corrugated
metal, tensile cracking and compressing yielding for reinforced concrete, and local buckling of wall profile elements for
thermoplastic pipes. The beam-column element derivation is presented in Chapter 2 for each pipe type.

With the above background on specific element types, we continue with the general finite element formulation, wherein
the global integrations expressed in Equation 1-4 may now be obtained as a summation of all element integrations.

Specifically, within each element we replace the global displacement vector Au by NAﬁe and ou by Nﬁﬁe Since
Aﬁe and o0 . are nodal-point parameters, they may be factored out of the element integrations. Thus, the element

integrations are performed over known interpolation functions resulting in the so-called element stiffness matrix and load
vector, expressed as;

k. = [Q)'CQMN)dV, Equation 1-6
VE:
Ap, = J.NTAT ds, + J.NTAf dv, Equation 1-7
S vV,

e e

Where, ke = element stiffness matrix
V, =volume of element

Ap, = element load vector

S, = surface of element where traction is applied
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1.2.2 Global assembly and incremental construction.

Each element is assigned a construction increment number, which corresponds to the load step number that the element
stiffness matrix and load vector is assembled into the global system. Once an element stiffness enters the system it remains
active for all subsequent load steps (there is no element death option except for link elements). Of course, the element
body-load vector is only applied during the load step corresponding to the element construction increment number; it is
not reapplied on subsequent load steps. Similarly, surface pressure and/or point loads (i.e., force boundary conditions)
are also assigned a particular construction increment number and are only applied during the corresponding load step.
Likewise, displacement boundary conditions are applied during the load step they are specified and remain fixed for all
subsequent load steps.

To facilitate the global assemblage of elements, the current list of all active nodal degrees of freedom are aligned in a
particular sequence order corresponding to the numerical sequence of the number-tag assigned to each node. Each active
node is assigned two sequential positions in the global list for the horizontal and vertical nodal degrees of freedom. For
those nodes that have a beam-column element attached, a third sequential position is assigned to the global list for the

rotational degree of freedom. The global displacement vector, ﬁG , represents the ordered list of all active degrees of

freedom.

With the above understanding, the finite-element equivalent of Equation 1-4 is obtained by summing all active element
contributions and assembling them into the global incremental virtual work statement. Since SflG is an arbitrary virtual

movement of all active degrees of freedom, the virtual work statement requires that the following set equilibrium
equations be satisfied for each load step.

K AU, = AP, Equation 1-8

where, K= Z lge = incremental global stiffness matrix

elements

AP, = Z Ap, = incremental global load vector

elements
AflG = increment of global displacement vector (unknown degrees of freedom)

If the global system is linear, (that is, linear models are selected for the pipe materials, soil zones, interface conditions,
and deformation theory), then the global stiffness matrix is directly calculable and constant for each load step. With this
simplifying assumption, Equation 1-8 represents a set of linear algebraic equations that may be solved by standard

methods such as Gauss Elimination to obtain AﬁG . The running summation of each AﬁG over all load steps provides

the total solution for the global displacement vector. More commonly, most culvert problems exhibit some type of
nonlinear behavior so that the global stiffness matrix is not constant during the load step, requiring a nonlinear solution
strategy discussed next.

1.2.3 Nonlinear solution strategy

CANDE employs a solution strategy known as the direct iterative method, or more simply called trial and error. This
method has proven to be robust and readily accommodates the wide variety of nonlinear models such as tensile cracking
and elastic-plastic behavior of pipe models, hyperbolic constitutive laws for soil models, frictional sliding and separation
for interface models, and geometric nonlinearity for large deformation analysis. Most importantly, the solution accuracy
is not too dependent on the magnitude of load increments; that is, a large load increment will often produce essentially
the same results as the case where the load increment is divided into two or more sub-increments.

To illustrate the strategy, we start with the assumption that a valid (converged) solution is in hand for load step i, and we
seek to increment the solution from load step i to i+1. That is, we know the mechanical responses (displacements, stresses,
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strains, etc.) at load step i and we seek to update the mechanical responses at load step i+1. The global set of equations
for load step i+1 is expressed with an iteration counter k as;

Ko Alg, = AP, Equation 1-9
where, K, = global stiffness matrix for iteration k, (assembly of active elements)
AﬁGk = increment of global displacement vector for iteration k (active dof)

AP, = incremental global load vector for iteration k

k = iteration counter; 1, 2, 3, ...

For the first iteration k =1, the global stiffness matrix is assumed to remain the same as computed at the end of the
previous iteration cycle for the step i, except for the addition of new elements entering the system for the first time at
load step i+1. Note, if load step i+1 happens to be the first step, meaning the initial configuration, then the global stiffness
matrix is constructed based on unloaded, linear-elastic elements belonging to the initial configuration prior to loading.

With the above understanding, the set of linear-like equations (Equation 1-9 for k = 1) is solved by a standard Gauss
elimination scheme for the first trial solution AﬁGl . The trial solution is temporarily added to the known mechanical

responses at load step i to form a new and better estimate of the displacements, stresses and strains at load step i+1. Next,
all the nonlinear models for each element are re-evaluated based on current estimate of mechanical response for load step
i+1, typically requiring small modifications to the element’s stiffness matrices.

The process is repeated for k = 2, 3, 4 ... until convergence is witnessed. That is, iteration k produces a trial solution
AU, that is based on the revised stiffness matrix from the previous iteration All;,_,. When two consecutive iterations

produce the same stiffness matrices for all elements within small error limits, then the solution has converged and we
proceed to the next load step. The mechanics behind updating each element stiffness during the iteration cycle depends
on the particular nonlinear model, discussed in subsequent chapters.

Once a converged solution increment has been found, all the mechanical responses are updated based on the last iteration
solution, all intermediate iteration solutions are discarded. Thus prior to starting the next load step, the mechanical
responses are permanently updated as symbolically shown below

qi = ¢+ Aq Equation 1-10

where q stands for all structural responses such as displacements, stresses, strains, moments, thrusts, etc. The data is
saved in the program and the output file thereby providing a load-response history record.

As a final comment, it must be recognized that convergence is never guaranteed to occur. Sometimes convergence does
not and should not occur because the system or portion of the system is physically incapable of carrying additional loading
(singular system). In the normal default mode, CANDE will terminate on non-convergence with a message describing
what nonlinear models are not converging. However, CANDE also offers the user control over the number of iterations
with a special command to continue processing load steps even after a non-convergence load step has been encountered.
In this way the user may inspect the post-convergent results to ascertain the cause of the problem.

1-8
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2 BEAM-COLUMN ELEMENTS - PIPE TYPE MODELS

Presented in this section is a complete development of the beam-column elements used for modeling corrugated metal,
reinforced concrete and thermoplastic pipe materials (or any two-dimensional structure). The initial development is
focused on the general finite-element formulation that is applicable to all pipe-type material models. Subsequent
developments describe specific stress-strain models that distinguish one pipe-type material from another.

2.1 General Form

The major assumptions and limitations used for the beam-column element are listed below:

Two-dimensional framework in a plane strain formulation.

Bernoulli-Euler beam kinematics without shear deformation.

Small deformation theory (this restriction removed in Chapter 5).

Material nonlinearity is a function of normal stress and strain and their history.
Incremental virtual work formulation with incremental stress-strain relationships.

MRS

2.1.1 Beam kinematics.

Based on the assumption that cross-sectional planes remain plane in bending and axial deformation, the Bernoulli-Euler
assumption for displacement increments Au at any station x along the beam length and at any point y in the beam’s cross
section may be expressed as an increment from load step i to i+1 as,

Au(x, y) = Aa(x) + (y*-y)AV' Equation 2-1

where, Au (X,y) = displacement in x direction from column and bending deformation.
Aa (X) = uniform displacement in x direction from column action, independent of'y.
AV(X) = displacement in y direction as function of x, independent of y.

Av'=d (AV) /dx , derivative of Av with respect to X (local deformation slope).
y* = reference plane in the beam cross-section at y = y*, yet to be specified.

Aq = q,,,- q; = incremental change in any function q from load step i to i+1.

The Bernoulli-Euler assumption states that Au at any point in the cross-section may be described by a uniform
displacement Aa plus a rotational-like motion due to the slope of the transverse displacement increment. Note that the
axis, y*, is not specifically fixed in cross-section under these assumptions. Figure 2.1.1-1 illustrates the beam-column
element in local beam coordinates, wherein x is aligned with the longitudinal axis and y is in the transverse direction
locating positions in the beam’s cross section.

Figure 2.1.1-1 Local coordinates for beam element and cross section.

Beam-column element Cross section
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Applying small strain theory to the above displacement functions produces one non-zero strain component, which is the
strain normal to the beam cross section, Ae=d(Au)/dx . In terms of the Bernoulli-Euler functions, the incremental

normal strain function is given by:

Ae(x,y) =Aa'+ (y*y)Av" Equation 2-2

!
Where( ) = d( ) / dx, prime symbol denotes derivative of any quantity with respect to x.

2.1.2 Incremental stress-strain model

The nonlinear stress-strain laws used in CANDE are specific to each pipe material such as corrugated metal, reinforced
concrete, and profile plastic pipe, which are presented in subsequent sections. However, all pipe materials stress-strain
models conform to the same generic form expressed as;

Ac =E_Ae Equation 2-3

where, AG = increment of axial stress from load step i toi+ 1, (Ac = i1l - Gi)
Ag = increment of axial strain from load stepitoi+ 1, (Ae =g - &)

EC = chord modulus of total stress-strain curve from load stepitoi+ 1

The chord modulus is dependent on the type of material and is generally dependent on the history of stress and strain
throughout all loading steps. It is determined iteratively during each load step by repeating the solution process until the
value of E; converges for each point within the element to a small tolerance of error. The chord modulus is illustrated in
Figure 2.1.2-1 for a generic, nonlinear stress-strain relationship.

Figure 2.1.2-1. Generic incremental stress-strain relationship.

Stress
A

Strain

-
Ei €i+1

Replacing Ae in Equation 2-3 with Equation 2-2, the fundamental stress-displacement relationship may be expressed as,
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Ac = E (Aa'+ (y*-y)Av") Equation 2-4

Next, we will use the above equation to define the internal thrust and internal moment acting on the cross section at any
station Xx.

2.1.3 Internal thrust and moment increments

As is customary, we define the thrust increment as the integral of Ac over the cross-section area A, and the moment
increment as the integral of Ac (y*-y) over the cross-section area A. Specifically,

AN=[AcdA = [E (Aa'+ (y*-y)Av") dA Equation 2-5
A A

AM = I Ac(y*-y)dA = .[ E.(Aa'+ (y*y)Av")(y*-y)dA Equation 2-6
A A

where, AN = thrust increment from load step i to i + 1, (AN = AN (x))
AM = moment increment from load step i to i + 1, (AM = AM (x))
dA = b(y)dy, a differential area of cross section where b(y) is the width

Figure 2.1.3-1 shows the incremental thrust and moment resultants for an arbitrary cross-section with the coordinate y
measured from bottom.

Figure 2.1.3-1 Thrust and moment increments from integration of stress distribution

" Ao(x,y)

T

' AN(x) AM(x)
: —-

The location of the arbitrary reference position y* is now conveniently selected so that the first moment of integration is
Zero, i.e., I Ec (y*-y) dA = 0. Therefore, the location of y* measured from the bottom of the cross section is,

y*=([E, ydA)/ (JE.dA) Equation 2.7
A A
With the above definitions for y*, the thrust and moment increments simplify to the following equations,
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AN = EA*Aa’ Equation 2-8

AM = EI*Av" Equation 2-9

where, EA* = J‘Ec dA = effective axial stiffness of beam element
A

2
EI* = J.E c (y*-y) dA = effective bending stiffness of beam element
A

In the above equations, the thrust expression is written in the familiar linear form as the product of axial stiffness and
column strain; likewise, the moment expression is written in the familiar form as the product of bending stiffness and
beam curvature. Although the equations for thrust and moment increments may appear linear-like, the integrals defining
y*, EA*, and EI* depend on the nonlinear chord modulus, which in turn depends on the stress-strain state at each point
in the cross-section in advancing from load step i to i+1.

From an analytical viewpoint, the only difference between one nonlinear pipe material and another is calculation of y*,
EA*, and EI* along with the associated convergence criteria. Except for these calculations, the fundamental beam-column
formulation is identical for all pipes as presented in the remainder of this section.

2.1.4 Beam-column virtual work.

The general framework of incremental virtual work as previously presented is now specialized for the beam-column
element. Specifically, the increment of internal virtual-strain-energy is written as,

0AU, = I(Sa’ + (y*-y)SV")Ac dv Equation 2-10
\%

where the virtual strain is expressed in terms of the Bernoulli-Euler functions prescribed in Equation 2-2, and V represents
the volume of the beam-column element.

Separating the volume integral into area and length integrals, dV = dAdx, we arrive at,

SAU, = [{8a'[ AcdA +8v"[ Ac(y*-y)dA} dx Equation 2-11
X A A

Since the two area integrals in the above expression have been identified as AN and AM, the above expression may be
equivalently written as,

AU, = j {6a'AN +5v"AM } dx Equation 2-12
X
Lastly, replacing AN and AM by Equations 2-8 and 2-9, we arrive at the desired displacement form for internal virtual
strain energy of the beam-column element,

SAU, = j (5a' EA* Aa’+ &v" EI*Av"}dx Equation 2-13

In a similar manner, the incremental external virtual work for body loads is specialized for the beam-column element as,

W, =| (3aAF, + SVAF, )dx Equation 2-14

where, AFX = Ifdi = axial body force per unit beam length in local x-direction,
A
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AFy = J. fydA = transverse body force per unit beam length in local y-direction.
A
The body force per unit volume is assumed to be generated by gravity acting in the global vertical direction so that fx and
fy are the component body forces per unit volume in local beam coordinates. Recall that all surface tractions and pressures
are incorporated in the system at the global level, not at the element level.

2.1.5 Finite element interpolation functions.

To utilize the internal and external virtual work expressions in a finite element formulation for the beam-column,
elements, we introduce specific interpolation functions for the displacement functions that become exact as the element
lengths become small. The interpolation functions are expressed in terms of unknown nodal variables shown in the sketch
below.

Va Vb

X Ba g I_;un w g'IA 91)

where, Au a0 Aub = incremental nodal displacements in x direction at nodes a and b
AV,(1 R AVb = incremental nodal displacements in y direction at nodes a and b

Aea R A@b = incremental nodal rotations in counter-clockwise direction at nodes
The incremental axial displacement function is approximated with a linear interpolation function given by,

Aa(x) = @,(x) Au, +¢,(x) Au, Equation 2-15a
Or in vector notation,

Aa(x) = <@, ¢,> <Au, Au,>" Equation 2-15b

where, @, (x) =1 - x/LL = first interpolation function defined over beam length L.
0, (x) = x/L = second interpolation function defined over beam length L.

The incremental vertical displacement function is approximated by a cubic polynomial, known as a Hermitian
interpolation function, and is expressed in vector notation by,

AV(X)= <y, ¥, V5 Y4 ><Av, A0, Av, A0, >' Equation 2-16

where, y,(x)= 1-3 (x/L)’ +2 (x/L)’ = Hermitian interpolation function one,
y,(x)= L(1-x/L)* x/L = Hermitian interpolation function two,
v,(x) = 3 (x/L)* -2 (x/L)’ = Hermitian interpolation function three,
y,(x)= L (x/L-1) (x/L)> = Hermitian interpolation function four.
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The above interpolation functions for axial deformation and bending lead to the element stiffness matrices developed
next.

2.1.6 Element stiffness matrices.
Taking the necessary derivatives of the interpolation functions for Aa(x) and Av(x) and inserting them into the two

internal virtual work terms of Equation 2-13, we arrive at the following expressions for internal virtual work in terms of
axial virtual work and bending virtual work.

SAU, = 8<Au,Au,> K, < Au,Au,>" + 3< Av,A0,Av, A0, >K, < Av,A0,Av, A0, >"

L
where, K, = (EA¥) j[<(pi 0, >' <o ¢} >]dx (axial stiffness) Equation 2-17
0
L
and, K, = (EI*) J [<y! va ys v >T <yl v4 7 y">]dx (bending stiffness) Equation 2-18
0

Performing the integrations with respect to x over the element length L, we arrive at the final evaluation for the axial
stiffness and bending stiffness as recorded below.

1 -1
K, = (EA*/L) [ { J Equation 2-19

12/12 6/l -12/12 6/L
6/L 4 -6/L 2
(EI*/L) 5 R Equation 2-20
-12/12 -6/ 12/17  -6/L

6/L 2 -6/L 4

I
I

For linear materials EA* and EI* are constant and remain the same throughout the analysis. For nonlinear materials the
stiffness factors EA* and EI* are determined iteratively for each load step wherein the factors are computed from the
average moment and thrust at the center of the element. This implies that the elements will be sufficiently small so that
thrust and moment do not vary substantially over any one element.

The above two matrices are combined into a single 6 x 6 matrix by re-grouping the nodal unknowns into a single vector
as expressed below

Al,= <Au, Av, AO, Au, Av, AD,>" Equation 2-21

where, AU . 18 a vector of the six nodal unknowns in element coordinates. Accordingly, the 6x 6 element stiffness matrix

is formed from the adding K, and K to get the complete element stiffness matrix, Ke.
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1 0 0 -1 0 0 0 0 0 0 0 0
0 0 0 0 00 0 12/ 6/L 0 -12/' 6L
K=£ 000 0 0 0 L ErF0 6/L 4 0 -6/L 2
~— L |1 00 1 00 L 0 0 0 0 0 0
0 0 0 0 00 0 12/ -6/L 0 12/ -6/L
000 0 0 0 0 6/L 2 0 -6/L 4

2.1.7 Transformation to global coordinates.

The last step before adding the element’s contribution into the entire system is to transform the nodal variables from local
coordinates to global coordinates.

Let B = angle from global X-axis to local x-axis, then the local nodal variables may be expressed as global nodal variables
by,

Au, =T AﬁE Equation 2-22
where, Al,= <Au, Av, Ab, Au, Av, A9, >T  —ocal nodal variables for element

A= <Au, Av, AD, Auy Av, AB,>" = global nodal variables for element

cosp  sinf 0 0 0 0
-sinf  cosp 0 0 0 0
0 0 1 0 0 0
T= = transformation matrix
0 0 0 cosp  sinf 0
0 0 0 -sinf  cosp 0
0 0 0 0 0 1

With the above transformation matrix, the global element stiffness matrix may be expressed in global coordinates as,

K, = IT K. T = global element stiffness matrix Equation 2-23

It should be clear that lower-case subscripts are used for element quantities that are in expressed in local coordinates,
whereas upper-case subscripts are used for element quantities that are in expressed in global coordinates.

The element load vector due to body weight may be directly expressed in global coordinates because gravity operates in
the global Y direction (negative). Thus, the element’s weight is divided equally to both nodes and acting in the -Y

direction associated with Av, and Av,, as expressed below.
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Apgp =-pAL = global element load vector Equation 2-24

172

where, p is the density of the beam-column material, A is the cross-sectional area and L is the length. The element
stiffness matrix Kg and load vector Apg are in the proper form for global assembly.

2.1.8 Equation solving and recovery of structural responses.
After the entire set of elements is assembled and solved by Gauss elimination as described in Sections 1.2.2 and 1.2.3,
the solution (or trial solution) gives numerical results for the incremental displacements at all nodes. Using these results,
other key structural responses of the beam-column element are calculated (recovered) based the previously developed
relationships. Key responses include internal thrust, moment and shear resultants and stress and strain distributions.

First, the internal force and moment increments at the ends of the beam-column element are recovered by multiplying

the element stiffness matrix by the calculated incremental displacements (transformed to local coordinates) as shown
below.

<AN, AQ, AM, AN, AQ, AM, >T = K, Au. Equation 2-25
where, AN&l , ANb = thrust force increments (local x; direction) at nodes a and b
AQa , AQb = shear force increments (local y; direction) at nodes a and b

AMa R AMb = moment increments at nodes a and b (invariant to x-y coordinates)

The fact that the incremental end forces can be recovered by multiplying the current element stiffness matrix times the
incremental displacements is a direct result of applying incremental virtual work to a free-body beam-column element
cut just short of the end nodes. Said another way, the incremental forces and moments at the cut ends are the additional
end forces that are required to hold the free-body element in equilibrium as a result of the incremental load. As a result
of the assumed interpolation functions, thrust and shear forces are constant within the element and the moment varies
linearly from end to end. Thus, AN and AM are known at every point x along the element length.

Next, the incremental strain, defined by Equation 2-2, may be evaluated at any point (x,y) by using Equation 2-8 to
evaluate the constant axial strain increment (Aa’ = AN/EA*) and Equation 2-9 to evaluate the bending curvature (Av”

= AM/EI*) as shown below. The strain distribution over any cross-section is always linear irrespective of the material
stress-strain model.

Ag (X,y) = AN/EA* + (y*-y)AM/EI* Equation 2-26

Knowing the strain distribution, the stress increment at any point (x,y) may be calculated using the incremental stress-
strain relationship (chord modulus) defined by Equation 2-3, which is dependent on the particular type of material.

Ac (x,y) =E, Ae (X,y) Equation 2-27
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where, E ¢ E c((S(X,y)) = chord modulus as a function of total stress and stress history

Unlike the linear strain distribution, the incremental stress distribution is, in general, nonlinear over the cross-section
because the chord modulus is dependent on the total stress magnitude and history.

After the incremental structural responses have been computed, the total structural responses at load step i + 1 are
computed by adding the incremental values to the values of previous load step as indicated below.

q.,=q; 1t Aq Equation 2-28

where q stands for any structural responses such as displacements, stresses, strains, moments, thrusts, and so
on. If the solution represents a converged load step (or a linear system), then the g+ values are printed to
the output file and permanently stored in the computer in preparation for the next load step. On the other
hand, if the solution has not converged, the gi+1 values are used temporarily to compute improved estimates
of the element stiffness matrices and then discarded.

2.1.9 Nonlinear solution strategy

The key section properties, EA*, y* and EI*, are the heart of the nonlinear algorithm, and they are computed at every
node for every iteration. Shown below is a summary of the key section property definitions.

EA* = I E, dA = effective axial stiffness of beam element Equation 2-29a
A
y* = (I E ydA)/ (j E dA) = reference axis Equation 2-29b
A A
_ 2 B . . . .
El* = _[ E. (y*-y)"dA = effective bending stiffness of beam element Equation 2-29¢
A

To perform the above area integrations, the chord modulus, Ec, must be estimated at each point in the cross-section. As
previously illustrated in Figure 2.1.2-1, the chord modulus for nonlinear materials is dependent on the known stress-strain
state at load step i and the unknown stress-strain at load step i + 1, thereby requiring an iterative solution strategy as
outlined below.

1. For the first iteration, the chord moduli are assumed to remain unchanged from the converged results of load
step i. Thus, the key section properties and element stiffness also remain the same as they were. Based on
these known element stiffness matrices, the first trial solution is obtained for the new incremental load vector
from load step i to load step i+1.

2. Using the first trial solution, the recovery process discussed above provides estimates for 6i+1 and &i+1, which,
in turn, provides new estimates for the chord moduli depending on the particular stress-strain model assigned
to the element.

3. Knowing the new estimates for the chord moduli, the area integrations in Equations 2-29a,b,c are performed to
provide new estimates for the key section properties, EA*, y* and EI*, and hence, revised element stiffness
matrices.

4. After assembling the revised element stiffness matrices, the next trial solution is obtained, which leads to new

estimates for oi+1, €i+1, and E, for each point in the cross-section. Once again, the area integrals are evaluated
to provide better estimates of the key section properties at each nodal location, and so on.
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5. The above process is repeated for each iteration until two successive solutions produce essentially the same
section properties for every element within 1% relative difference. When this occurs, the solution is said to
have converged and all the updated structural responses are printed and saved for the next load step.

The area integrations for section properties, EA*, y* and EI*, are accomplished in each pipe-type subroutine. In some
cases, the integrations are done numerically and in other cases the integrations are accomplished in a semi-analytical
manner depending on the stress-strain model of the pipe material. In subsequent sections of this chapter the calculation
procedure to obtain EA*, y* and EI* for each pipe material are presented for each pipe-type material.

2.2 Corrugated Metal

2.2.1 Overview of corrugated metal pipe type

Corrugated metal applies to both corrugated steel and corrugated aluminum. Both metals are represented by the same
fundamental models and differ only with respect to the numerical values of key parameters such as modulus and yield
stress. Wall properties of corrugated metal are characterized by cross-sectional area, moment of inertia and section
modulus, which represent the geometry of the corrugation’s waveform per unit length. The aluminum pipe-type
subroutine and the steel pipe-type subroutine have built-in tables for commercially available corrugation sizes as well as
realistic default values for all linear and nonlinear material properties. Steel and aluminum material behavior is simulated
with a bilinear stress-strain model with an initial elastic response up to yield stress followed a hardening plastic response,
identical in tension and compression. All unloading is assumed linear elastic.

2.2.2 Design criteria for corrugated metal

Design criteria for corrugated metal includes strength limits for thrust stress against material yielding in hoop
compression, global buckling and seam strength rupture. Although not yet required by AASHTO, another meaningful
strength criterion is a limit on the amount of plastic penetration through the cross section. For deep corrugations with
corrugation heights > 5.0 inches, the combined thrust-moment criterion is more stringent than the separate requirements
of the thrust stress and plastic penetration criterions. Finally, a performance limit on the allowable deflection completes
the set of design criteria. The design criteria are summarized in the following table.

TABLE 2.2.2-1 Corrugated Metal Design Criteria.

Design Criterion Demand Capacity
(Strength limits)
(1) Thrust stress (psi) G, = Nmax /A fy: yield strength

2) Global Buckli : f, = buckling capacity:
(2) Global Buckine (=) O~ N /A *AASHTO Eq. 12.7.2.4-1, or

*AASHTO Eq. 12.8.9.6-1, or
* CANDE prediction.

(3) Seam strength (psi) . =N__/A fs = seam strength

pp = percent of cross-section|

4) Plastic Penetration (% ) failure = 1009

@ %) plastically deformed. /o
2

(5) Combined Moment- | pi M .. N N Ratio Limit = 1.00

Thrust Criterion (ratio). M, Afy

(For deep corrugations only)
(Performance Limits)

(At Service Load)

(5) Allowable deflection (%) A =computed deflect % Allowable = 5%
(Long Spans = 2%)

N . = max thrust force, M_ = max moment, A = area, M_= plastic moment
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The above design criteria are equally applicable to working stress or LRFD design methodologies. For the working stress
approach, the demand and the capacity quantities are unfactored, and the design evaluation is given by safety factors
defined as capacity divided by demand. Typically, safety factors on the order of 2.0 are desirable for strength-related
criteria. For the LRFD approach the demand and the capacity quantities are factored (see Chapter 6), and the design
evaluation is given by ratios of demand-to-capacity. Demand-to-capacity ratios less than or equal to 1.0 are acceptably
safe. Further discussion on the design criteria is provided below.

1.

Thrust stress. Thrust-stress demand is determined by finding the element with the largest thrust force, Niax,
and dividing by the cross-sectional area. The corresponding yield-strength capacity is typically 33,000 psi for
steel and 24,000 psi for aluminum.

Global buckling. For the buckling-strength capacity, CANDE-2022 offers the user three choices; (1) an
approximate and generally conservative estimate based on the simplified AASHTO LRFD equations 12.7.2.4-
1-2, (2) another approximate AASHTO LRFD equation 12.8.9.6-1 intended for deep corrugations, and (3) a
much more accurate solution based on CANDE’s large deformation formulation with linearized buckling
prediction.

Seam strength. If longitudinal bolted seams are present in the corrugated metal culvert, the seam-strength
capacity is typically less than the material yield strength. In the absence of experimental test data, seam-
strength capacity is often specified as 67% of material yield-strength capacity.

Plastic penetration. On the demand side, the percentage of the cross-section that is strained into the plastic
range from thrust and bending is calculated directly from the nonlinear corrugated metal model. The limit of
plastic penetration is100% of the cross section, meaning cross section is incapable of carrying any additional
load. Note that some amount of plastic yielding is expected to occur in the outer fibers of most well-designed
corrugated metal culverts under service loading. Although AASHTO does not specify a limit on the percent of
plastic penetration for standard corrugations, the plastic penetration design criterion offers a precaution against
full 100% yielding of the entire cross section without restricting moderate amounts of outer fiber yielding.

Combined moment & thrust. This relatively new AASHTO criterion is intended for deep corrugations whose
corrugation height is greater or equal to 5.0 inches. For LRFD evaluation the ratio defining the combined
moment-thrust criterion implies that numerators include load factors and the denominators include resistance
factors, whereas for working stress evaluation they do not.

Allowable deflection. Computed deflection is the relative vertical movement between the top and bottom of
the culvert structure, and the percent deflection is relative the vertical distance. The service load limit for
allowable deflection is generally taken as 5% for all corrugated metal structures except long spans, which are
usually limited to 2% of the vertical rise.

2.2.3 Nonlinear model for corrugated metal
The one-dimensional stress-strain relationship for metal is approximated by a bilinear curve as shown in the figure below.
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Figure 2.2.3-1  Stress-strain relationship for metal culverts
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The model is identical in tension and compression and applies to both steel and aluminum, which differ only in parametric
values as shown in the table below.

Table 2.2.3-1 Typical material parametric values for steel and aluminum

Metal type Yield strength Elastic Young’s modulus, E; | Upper curve modulus, E,
psi psi psi

Aluminum 24,000 10,000,000 500,000

Steel 33,000 29,000,000 0.0

The following material constants are used for plane strain conditions:
E.=E /1 -v?)= Effective plane strain modulus in elastic zone

v = Poisson ratio of metal
r = Eo/E| = Ratio of upper-curve modulus to initial modulus

r B, = Effective plane strain modulus for upper-curve zone.

Initial section properties are defined (input) as follows:
Ao = Cross-sectional area of corrugation per unit length
Ip = Moment of inertia of corrugation about mid-height
So = Io/(h/2) = Section modulus of corrugation
h = Total height of corrugation

Within the framework of the general nonlinear model, the objective is to determine the integral quantities EA*, y*, and
EI* defined by Equations 2-29a,b, & c. To accomplish this, the chord modulus E. must be determined consistently with
the bi-linear model, and, secondly, the area of integration must be defined. With regard to the latter, a manageable
integration area can be obtained by approximating the actual corrugation geometry by a saw-tooth pattern, such that the
same area Ao and depth of section h is preserved, as shown in Figure 2.2.3-2
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Figure 2.2.3-2 Saw-tooth approximation of corrugation for integrating in nonlinear range

dA = (Ay/h)dy

Periodic length

- —— -
W

Saw-tooth geometric properties:
Area = (Ayh) [, dy = A,
Centroid = (Ay/h) Iy v dy / Ag= h/2
Moment inertia = (Ay/h) |, (y-h/2)’ dy = A,h*/12

Correction factor for moment of inertia:
CII = IlI I'II (Auhzflz}
Moment inertia = C, (Ay/h) [, (v-h/2)’ dy =1,

As shown in the above figure, integration of the saw-tooth approximation yields the correct area and centroid location,
however, the moment of inertia = A¢h?/12 is an approximation of actual corrugations, which are more rounded at the top
and bottom than the saw-tooth approximation. By inspecting sectional properties of standard corrugation tables, the
moment of inertias from the saw-tooth approximation are 5 to 10% lower than the reported moment of inertia values. To
correct for this discrepancy, integrations for the effective bending stiffness will be multiplied by the correction factor Co
defined in the above figure in order to reproduce the correct moment of inertia. Of course, if the metal is not yielding
anywhere in the cross section, the chord modulus has the constant value E. and may be removed from inside the integral
and integrations need not be performed since the section properties are already known.

Recalling the chord modulus relates increments of stress to increments of strain, Ac = Ec Ag, the bilinear model results
in three distinct zones as illustrated in Figure 2.2.3-3. Case loccurs when the strain increment lies entirely in the elastic
zone, bounded by the yield strain, as illustrated by Ag;. Case 2 occurs when the strain increment starts in the elastic region
and exceeds the yield strain, as illustrated by Ae,. Finally, Case 3 occurs when the strain increment starts at a strain greater
than yield strain and ends at a greater value, as illustrated by Aes. All other cases wherein the strain increment starts from
a large strain value and ends with a smaller strain value is elastic unloading and treated the same as Case 1.
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Figure 2.2.3-3  Illustration of strain increments in three zones; elastic, transition and plastic
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With the above understanding the general chord modulus can be defined in term of the bilinear model for the elastic,
transition and plastic zones as follows;

Ec=E. (Elastic zone) Equation 2.2-1a
Ec=Ec[(gy — €1) /(Agi+1) + 1 (8i+1 — £ y) /(Agi+1)] (Transition zone) Equation 2.2-1b
Ec=rE. (Plastic zone) Equation 2.2-1¢

In the above, the transition zone chord modulus is defined generally from load step i to i+1 where €; < &y < &+ .

The foregoing considered the stress-strain relationship at a point. To obtain EA*, y*, and ET*, the stress-strain relationship
must be defined over the cross-sectional area. To this end we take great advantage of the fact the strain profile always
remains linear due to Bernoulli-Euler kinematics. Figure 2.2.3-4 illustrates two typical strain distributions at load step 1
and at load step i+l. The cross-section depth is divided into the regions; elastic, transition, and plastic. The elastic region
is that portion which remains totally elastic during the load step. The transition region is the zone that begins elastic and
becomes plastic during the load step. And finally, the yield region signifies the zone where the material remains plastic.

2-14



Chapter 2 — Beam-Column Elements-Pipe Type Models CANDE-2022 Solution Methods and Formulations.
MGK

Figure 2.2.3-4  Typical strain profiles and resulting zone descriptions
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Knowing the strain profile at step i and having obtained a trial strain profile at step i+1, it is a simple matter to locate the
elastic-transition boundaries and the transition-plastic boundaries using straight-line equations as indicated in the above
figure. The elastic-transition boundaries are located where the strain profile at step i+1lintersects the yield strain limits,
and the transition-plastic boundaries are located where the strain profile at step i intersects the yield strain limits.

The chord modulus in the elastic and plastic zones is a constant value, however in the transition zones, the chord modulus
varies with y because the strain increments vary with y. To simplify the integrations of the chord modulus in the transition
zones, an average value of Ec is computed from Equation 2.2-1b based on the strain increment in the center of the
transition zones. Letting z ¢ and z » be the y-distance to the centroid of the lower and upper transition zones and
computing the strain increments at these levels, we can express the chord moduli as,

Eci=a; Ec  Average chord modulus in lower transition zone Equation 2.2-2a
Eco=ax E.  Average chord modulus in upper transition zone Equation 2.2-2b

where, o1=[(ey—¢€i)/(Agi+1) + 1 (€i+1 — €y) /(Agir1)], with Agi+; evaluated at lower transition center.
w=[(ey—g;) /(Agin) + 1 (8i+1 — € y) /(Agin1)], with Ag;ii evaluated at upper transition center.

The alpha terms are constants and are within the range, r < alpha < 1.0, depending on the transition zone boundaries,

which may be truncated at the top and bottom of the cross-section. This transition zone integration technique has proven
to be very accurate. The following table summarizes the data that is required to compute the key section properties.

Table 2.2.3-2  Zone integration parameters to compute key section properties

Zone Zone Description Zone Thickness Distance to zone Zone weight due to
Number centroid nonlinear modulus
1 Elastic Ah; Z1 w;=1.0
2 Lower transition Ahy 43 W2 =0
3 Upper transition Ah; 73 W3 = 0
4 Lower plastic Ahy Z4 W4=T1
5 Upper plastic Ahs Zs Ws=T1
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It should be understood that not all five zones might be active at any given time. Un-active zones are characterized with

5
Ah =0, so that h :z Ah; always hold true.

j=1

With the above understanding, the effective axial stiffness for trial load step i+1 is given by,

EA*= I ECdA = EeA* Equation 2.2-3a
A
5
where, A*= (Ao /h)z WJ.Ahj Equation 2.2-3b
=

The current reference axis is given by,
5
y*=( j E.ydA)/( j EcdA) = (O w z,Ah )/A* Equation 2.2-4
A A j=1

And finally, the effective bending stiffness is given by,

EI* = j E.(y*-y)’dA=E_I* Equation 2.2-5a
A
5
where, I*=C_(A,/h)) w,(Ah’/12 + Ah,(z;-y*)*) Equation 2.2-5b
=1

Unloading. The forgoing elastic-plastic stiffness properties are replaced with simple elastic properties whenever elastic
unloading is encountered. Elastic unloading is triggered by either one of two events, one event related to thrust reversal
and the other to moment revesal. Thrust reversal occurs when the average strain at the beginning of the load step exceeds
the yield strain, and the average strain decreases at the end of the load step. Moment reversal occurs when the depth of
the elastic zone increases from the beginning to the end of the load step.

In CANDE-2022 the above computations are carried out in Subroutine EMOD wherein convergence is achieved when
two successive trial solutions produce A*, y* and I* within 1% of the previous trial solution for all elements.
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2.3 Reinforced Concrete

2.3.1 Overview of reinforced concrete pipe type

Wall sections for reinforced concrete culverts are defined by the concrete wall thickness with up to two rows of
reinforcing steel, typically placed near the inner and outer surface with specified cover depths. In tension, concrete
behavior is characterized by cracking when tension stress levels exceed the tensile strain limit. When this occurs, the pre-
existing tensile stresses are redistributed to the uncracked section, and the cracked location is assumed not to heal for any
subsequent tensile loading. In compression, concrete is simulated with a tri-linear stress-strain curve. Initially, the
concrete response is linear up to a specified strain level after which the concrete exhibits plastic-hardening behavior.
When the compressive stress reaches the ultimate strength limit (fc”), the stress-strain response becomes perfectly plastic
with no increase in stress as compressive strain increases. Reinforcing steel behavior is characterized by an elastic-plastic
stress-strain model, which becomes perfectly plastic when the steel yield stress is reached in tension or compression.

2.3.2 Design criteria for reinforced concrete

Design criteria for reinforced concrete culverts include strength limits for yielding of steel reinforcement, crushing of
concrete in compression, diagonal cracking due to shear failure, and radial cracking due to curved tension steel (also
called bowstringing). Finally, a performance limit on the allowable flexure crack width, typically taken as 0.01 inches,
completes the set of design criteria. It is believed that the proposed design criteria faithfully represent the intent and, in
some cases, improve the clarity of the criteria as presented in the AASHTO LRFD specifications.

Table 2.3.2-1 Reinforced Concrete Design Criteria.

Design Criterion Demand Capacity

(Strength limits)

(1) Steel yielding (psi) f = max steel stress fy = yield strength

(2) Concrete crushing (psi) G, = max compression f'= compressive strength

(3) Shear failure (Ib/in) V__=max shear force V= concrete shear capacity

(4) Radial tension failure (psi) | ¢ = max radial stress t,, = ultimate radial strength
(Performance Limits)

(At Service Load)

(5) Allowable crack width* (in) | CW = max crack width CW,,,, = allowable CW (0.01inch)

The above design criteria are equally applicable to working stress or LRFD design methodologies. For the working stress
approach, the demand and the capacity quantities are unfactored, and the design evaluation is given by safety factors
defined as capacity divided by demand. Typically, safety factors on the order of 2.0 are desirable for strength-related
criteria. For the LRFD approach the demand and the capacity quantities are factored (see Chapter 6), and the design
evaluation is given by ratios of demand-to-capacity. Demand-to-capacity ratios less than or equal to 1.0 are acceptably
safe. Further discussion on the design criteria is provided below.

1. Steel yielding. The maximum steel-stress demand is computed directly from the nonlinear reinforced concrete
model. On the capacity side, the steel yield strength is an input or default value, nominally 60,000 psi for
deformed bars and 65,000 psi for smooth wire fabric.

2. Concrete crushing. On the demand side, the maximum outer-fiber concrete compressive stress is determined
directly from the reinforced concrete model as a result of thrust and compression bending. The ultimate
compressive strength or capacity is an input or default value typically in the range of 4000 to 6000 psi.

3. Shear failure. The maximum shear-force demand is computed directly from the beam-column internal forces.
Shear-force capacity is the shear force causing diagonal tension failure at a given cross-section. AASHTO LRFD
specifications prescribe three different shear-force capacities depending on structural shape and burial depth.
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e For concrete pipes and arches, the shear capacity is specified by Vmax = Equations 12.10.4.2.5,
which yield variable values for shear capacity dependent on the values for moment, thrust and
shear around the culvert wall.

e For boxes and 3-sided structures with 2 or more feet of soil cover, the shear capacity is specified
by Vmax= Equations 5.14.5.3-1 wherein the value is dependent on moment and shear (not thrust).

e For boxes and 3-sided structures with less than 2 feet of soil cover, the shear capacity is specified
by equations in Section 5.8.3.3 that, in some cases, depend on the nature of the traverse
reinforcement (stirrups).

Clearly there is a need to unify the AASHTO shear-capacity equations because rational mechanics indicates that
shear capacity should be a function of the cross-section properties and state of loading, not on the culvert shape or
depth of burial. CANDE allows the user to select among the three choices for shear-force capacity, however,
Equation 12.10.4.2.5 is considered the best predictor of shear-force capacity because of the large experimental data
base (Reference 14). CANDE also provides the option to choose the classical shear-strength method where shear-

strength = fé , where P is a specified factor, typically = 2.0.

4. Radial tension failure. On the demand side, the concrete radial tensile stress is caused by tensile forces in curved
inner cage reinforcement steel as it tends to straighten out and exerts radial tensile stresses on the interior
concrete cover thickness. The phenomenon is sometimes called bow stringing. CANDE predicts the radial
tensile stress by dividing the interior cage steel force (maximum tensile force per unit length) by the radius of
curvature of the steel cage, or letting A, = steel area per unit length., we have;

t =Af  /Radius Equation 2.3-1

ST max

The ultimate radial stress is related to the tension strength of concrete and the structure span. The radial tensile
strength capacity is adapted from AASHTO LRFD Equation 12.10.4.2.4c-1. and restated in psi units as:

t, = 37.92,/f./1000 F, Equation 2.3-2

where Fyis a scale factor dependent on structure span, specified in the contents of Equation 12.10.4.2.4c¢-1.

5. Allowable crack width. The allowable crack width at service loading is generally taken as 0.01 inches in
accordance with AASHTO LRFD specification 12.10.3. CANDE offers three empirical formulas to predict
crack width; the traditional Gergely-Lutz formula (Reference 16), the recently developed Heger-McGrath
formula (Reference 15), and a simple concrete strain-based formula proposed by the author.

The Gergely-Lutz and Heger-McGrath equations are similar in form and are driven by the computed tension
steel stress when it exceeds fj, the threshold stress for initial cracking. Their crack width predictions are
concisely stated in the equation below,

CW=S{,-f,)>0 Equation 2.3-3

where, CW = the crack width in inches,
fs = computed tension steel stress in psi,
S and fo = model parameters specified in the table below.
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Table 2.3.2-1 Crack width model parameters S and f»

Gergely-Lutz Heger-McGrath
(Reference 16) (Reference 15)
S =(0.122x10) (2ty?s; )3 S =(0.333x10) (tps1/ 2n)'"
where, t, = concrete cover thickness (inches) where, t, = concrete cover thickness (inches)
s1 = spacing between rows of steel s1 = spacing between rows of steel
reinforcement (inches) reinforcement (inches)

n = number of steel reinforcement layers in
the tension zone (1 or 2)

fy=31.6Ci(W/d)2 /£, /p

where, C; = 1.0 for smooth wire, 1.5 for welded wire
fabric, and 1.9 for deformed wire/bars.
h/d = total concrete thickness —to- effective
height (tension steel to other face)
p = reinforcement area ratio (Ayh).

fo = 5,000.

The Heger-McGrath prediction is well calibrated for predicting crack widths near 0.01 inches; however, it tends to
underestimate the prediction of smaller crack widths. The Gergely-Lutz formula is more accurate in predicting smaller
crack widths.

The concrete strain-based crack width prediction is given by,

CW= LS (Stension - 8crack) Equation 2.3-4
where, g . = computed tensile strain in outer fiber of concrete.
€., — tensile strain at initial concrete cracking, a concrete model property.

LS = characteristic length for crack spacing, nominally about 10 inches.

This crack width prediction is useful for fiber-reinforced and plain concrete or when there is no tension steel to drive the
Heger-McGrath or Gergely-Lutz crack width predictions.

2.3.3 Nonlinear model for reinforced concrete

Concrete model. The concrete constitutive model was originally developed in References 3 and 17. As shown in Figure
2.3.3-1, the model for plain concrete is a tri-linear curve in compression and an abrupt tension rupture at initial tension
cracking.
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Figure 2.3.3-1 Concrete stress-strain model and parameters.
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Primary model input parameters are defined below along with typical values shown in parenthesis
€ ¢ = concrete strain at initial tensile cracking (0.0001 in/in)
€ y = concrete strain at initial elastic limit in compression (0.0006 in/in)
€ . = concrete strain at onset of unconfined compressive strength (0.002 in/in)
f.” = unconfined compressive strength of concrete (4,000 psi)

Ei = Young’s modulus of concrete in linear zone (3,800,000 psi)

Using the above input variables, three additional parameters are derived as follows:
Ex=(f'-Eiey)/ (e - €y) = Young’s modulus in compression yielding zone
fyc= Ei|&y=compressive stress at initial yielding (2,000 psi)
f{=Ei € (= tensile strength at initial cracking and rupture (380 psi)

The following material constants are used for plane strain conditions:

E.=E /(1 _ch) = effective plane strain modulus of concrete in elastic zone

v, = Poisson ratio for concrete
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r = Eo/E| = ratio of compression yielding modulus to initial modulus
r B = effective plane strain modulus for compression yielding zone.

The above model has the following behavior characteristics. In tension, the concrete is linear until the initial tensile strain
exceeds the cracking strain limit € .. When cracking occurs, the tensile stress becomes abruptly zero (redistributed to non-
cracked portions of concrete). Once a point in the cross section is cracked, the crack is assumed not to heal so that there
is no future tensile strength. Thus, after initial cracking, the tensile strength parameter f'; is set to zero for all subsequent
reloading in tension.

For initial compression loading, the concrete behaves linearly until the stress level reaches the initial yield strength f .
after which plastic hardening begins to occur in the yield zone. Perfect plasticity occurs when the stress level reaches
compressive strength f.’. Unloading is elastic and with permanent plastic strain, and reloading is elastic until the stress
reaches its previous maximum value after which it follows the original stress-strain curve.

Steel model. The assumed stress-strain behavior for reinforcing steel is shown in Figure 2.3.3-2.

Figure 2.3.3-2 Stress-strain model for reinforcing steel.
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Steel behavior is assumed to be elastic-perfectly plastic defined by the input variables:

Eo = Young’s modulus for steel

fy = steel yield strength
Behavior in compression and tension is identical so that material is elastic whenever the stress magnitude is less than the
yield strength. Non-hardening plastic flow occurs when the stress attempts to exceed the yield strength. Unloading from
the plastic range is elastic and results in permanent plastic strains.
For the purposes of a plane-strain formulation, the steel modulus is denoted as;

E, = E,/(1-v,”) = effective plane-strain modulus of steel

L, = Poisson ratio for steel
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Section geometry. Figure 2.3.3-3 shows a unit width of concrete wall with steel reinforcement located near the inner
face (bottom) and the outer face (top).

Figure 2.3.3-3  Section geometry of reinforced concrete wall

—_———

®
Aso

Yo

Yi

Unit length——

Geometric measures of the reinforced concrete section are defined below:
h = concrete wall thickness
Asi = area of steel for inner cage per unit length of wall
A, = area of steel for outer cage per unit length of wall
yi = distance to centroid of A from bottom face
yo = distance to centroid of Ay, from bottom face

The uncracked, transformed, elastic section properties are computed as,

EA*=E (h+ (n-1)(A,+A,)) Equation 2.3.3-1
y*=(h*/2+ @-1)(y, A, +y,A,))A* Equation 2.3.3-2
EI* =E_ [ h*/12 + h(h/2-y*)’ + (n-1)(A, (y,-y*)* +A_ (¥, -¥*))] Equation 2.3.3-3
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where, n = E¢/E. = ratio of steel modulus to concrete modulus (transform method).

The uncracked, transformed elastic section properties are used for the first iteration of the first load step to obtain a trial
solution. If the loading does not cause cracking, concrete yielding or steel yielding, then the section properties as currently
computed are correct, and the next load step is considered. More generally however, nonlinear responses are observed
and iteration within the load step is required to obtain the solution as described next.

Nonlinear Strategy. We assume we have a converged solution at load step i and we seek an incremental solution for
load step i +1. Using the values of EA*, y* and EI* from the previous load step, a trial solution is obtained for the first
iteration thereby providing new estimates of the strain distribution at each reinforced concrete cross-section. To compute
the next estimate for EA*, y* and EI*, numerical integration is used over the concrete wall section to cope with nonlinear
chord modulus as illustrated in the figure below.

Figure 2.3.3-4  Strain profile from step i to i+1 and 11-point Simpson integration
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In concrete wall
Concrete chord modulus. The effective chord modulus, E’, from the known stress-strain state (o, &) to the estimated

stress-strain state (oi+1, €+1) is computed at each integration point using the concrete stress-strain curve as indicated in
Figure 2.3.3-5 and quantified in Table 2.3.3-1.
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Figure 2.3.3-5

Illustration of concrete chord moduli from oi, €i to 6i+1, €i+1
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The above figure implies the chord modulus, E’, connects the known starting point (oj &;,) to the estimated end point (i1,
€i+1) where &+ is obtained from the trial solution and o+ is the corresponding stress determined from the stress-strain

relationship as quantified in the table below.

Table 2.3.3-1.

CANDE-2022 Solution Methods and Formulations.

Concrete chord modulus and modulus ratio for specified starting and ending zones.

Starting Zone Ending Zone Corresponding Chord modulus Modulus ratio
& €i+1 Stress E’ F'(y)=E/E.
Oi+l
elastic elastic ci + EcAg E. 1.0
elastic yield oi + rE(&it1 - &) rEe(gir1 - &)/ Ag <1.0
elastic plastic fe (fo’ - o)/ Ag <1.0
yield yield oi + rEcAg rEc T
yield plastic o (fe’ - oi)/ Ag <1.0
plastic plastic o 0.0 0.0
any compress zone unloading ci + EcAg E. 1.0
elastic rupture 0.0 - i/ Ag <1.0
rupture rupture 0.0 0.0 0.0

In the above table, the concrete-modulus ratio is defined as the chord modulus divided by the initial elastic modulus,

F'(y) = E'/ Ec. Thus, F’ varies through the cross-section in the range, 0 < F'(y) < 1.
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Elastic unloading occurs from any compression zone whenever | ¢ i1 | < | ¢ | with the provision that neither strain
is in the rupture zone.

For the case when the starting strain is tensile but not yet at initial crack strength, 0 < g < &, and the ending strain is in
the rupture zone causing initial concrete cracking, we set E’ = 0 (instead of a negative softening modulus) and the pre-
existing tensile stress is distributed to the uncracked portion of the cross section by adjusting the thrust and moment
increment to compensate for the loss of stress at the cracked location. Once a point in the cross section is cracked the
tensile strength is set to zero for all future loading conditions implying the crack does not heal. Crack depth is directly
predicted from the concrete model.

The above algorithm requires maintaining data records at each integration point to keep track of the cracking history as
well as the maximum compressive stress encountered during the loading schedule to properly simulate unloading and

reloading.

Steel chord modulus. Reinforcing steel is lumped at the inner and outer cage locations, measured by y; and y,. The chord
modulus for steel at either location is easily deduced from the elastic-plastic relationship as shown in the following table.

Table 2.3.3-2.  Steel chord modulus and modulus ratio for specified starting and ending zones.

Starting Zone Ending Zone Corresponding Chord modulus Modulus ratio
€ €itl Stress E¢ W’ =E'/ Es
Gitl
elastic elastic ci + EsAe E 1.0
elastic plastic fy (fy - o9/ Ag <1.0
plastic plastic fy 0.0 0.0
unloading elastic ci + EsAe E. 1.0

In the above table, the steel-modulus ratio is defined as the chord modulus divided by the initial elastic steel modulus,
W’ = E'l Es, where the ratio is in the range, 0 <W’ < 1.

To summarize, the relationships for chord moduli of concrete and steel are listed below:

E'(y) = E_F'(y) = concrete chord modulus at location y in cross section Equation 2.3.3-4

E!, =E W,/ = steel chord modulus at inner cage location, yi. Equation 2.3.3-5

E!, =E ,W!. =steel chord modulus at outer cage location, ys. Equation 2.3.3-6

Re-expressing the steel chord moduli with concrete-transform parameters, we have

E; =n,E W/ Equation 2.3.3-7

’ _ ! .
E, =n E.W, Equation 2.3.3-8
where, 1, n,=E_/E -1, if concrete is not cracked around the steel

n, n = ES /Ee , if concrete is cracked around the steel

[73%1)

The transform method expresses the elastic steel modulus as a multiple “n” of the concrete elastic modulus with the
understanding that the uncracked concrete area needs to be reduced by the steel area. On the other hand, if the concrete
is already cracked then further reduction of concrete area by the steel area is not required.

Key section properties. The equations for the key section properties are expressed in transformed parameters as:

h
EA* =B ([F(y)dy + n,WA, +n,W,A,) Equation 2.3.3-9
0
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h
y*= (.[ F(y)ydy +n, WAy, +n W A_y, )/A* Equation 2.3.3-10
0
h
El* = Ee(I F'(y)(y-y*)’dy + n. WA_ (y,-y*)* +n, W A_ (v, —»*)") Equation 2.3.3-11
0

The integrals over the concrete wall thickness are achieved with 11-point Simpson integration to evaluate the following
three sums where F’(yi) is the concrete modulus ratio at integration point i.

h

S,=[F'(y)dy = (W30)[F'(y, ) +4F'(y,}+2F (y;)+..+F'(y,,)] Equation 2.3.3-12
0
h

82=IF'(y)ydy = (W/30)[F'(y,))y, H4F'(v,)y, +2F'(y,)y, +... 7F'(y,)y,,] Equation 2.3.3-13
0
h

S,=[F(y)y’dy = (W30)[F'(y,)y, +4F(y,)y,"+2F (y,)yy’ +..+F (y,,)y;,’] Equation2.33-14
0

Using the above integration results, the final results for the key section properties are expressed as,

EA*=E (S, tn WA, +n WA ) Equation 2.3.3-15
y*=(S, +n WAy, +n W A_y )A* Equation 2.3.3-16
El* = E_(y*S,-2y*S,+S, + n, WA (y,-y*)* +n, W, A_ (y,-y*)") Equation 2.3.3-17

Iterations with in the load step continue until successive calculations for EA*, y* and EI* are within 1% relative error
for all cross section.
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2.4 Thermoplastic Pipe

2.4.1 Overview of thermoplastic pipe type

Thermoplastic materials include high-density polyethylene (HDPE), polyvinyl chloride (PVC) and polypropylene (PP).
CANDE-2022 provides three options to characterize the wall sections for thermoplastic pipe: smooth, general or profile.
Smooth refers to a uniform wall (gun barrel) whose cross-section properties are completely defined by the wall thickness.
General refers to an arbitrary property described generically by the wall’s area and moment of inertia per unit length.
Profile refers to the majority of manufactured plastic pipe whose wall section properties are characterized by the geometry
of profile elements including web, valley, crest, liner, and link elements.

Material properties are assumed linear elastic with default values provided for high-density polyethylene, polyvinyl
chloride and polypropylene for both short-term and long-term loading conditions. Short-term properties are generally
used when vehicular loading is dominant and long-term properties are used when earth loading is dominant. A nonlinear
local buckling algorithm is provided for the profile option wherein the profile’s section properties are reduced in
proportion to the amount of compressive strain computed in the sub elements due to local buckling.

2.4.2 Design criteria for thermoplastic pipe

Design criteria for thermoplastic pipes include strength limits for thrust stress against material failure in hoop
compression and global buckling. Another strength state is a limit on the maximum outer fiber combined strain (hoop
plus bending strain). Performance limit states include allowable vertical deflection and maximum allowable tensile strain,
dependent on type of plastic. The design criteria are summarized in the following table.

Table 2.4.2-1 Thermoplastic Design Criteria.

Design Criterion Demand Capacity
(Strength limits)
(1) Thrust stress (psi) .. =N_ /A f = ultimate strength
(2) Global Buckling (psi) 6,.,=N_. /A f, = buckling capacity
(3) Combined strain (in/in) g, = bending + thrust &, = ultimate strain
(Performance Limits)
(At Service Load)
(4) Allowable tensile strain €., =Max tensilestrain | g_, = allowable tensile strain
(5) Allowable deflection *(%) A, = computed deflect % | Allowable = 5%
(recommended)

The above design criteria are equally applicable to working stress or LRFD design methodologies. For the working stress
approach, the demand and the capacity quantities are unfactored, and the design evaluation is given by safety factors
defined as capacity divided by demand. Typically, safety factors on the order of 2.0 are desirable for strength-related
criteria. For the LRFD approach the demand and the capacity quantities are factored (see Chapter 6), and the design
evaluation is given by ratios of factored demand-to-factored capacity. Ratios less than or equal to 1.0 are acceptably safe.
Further discussion on the design criteria is provided below.

1. Thrust stress. Thrust-stress demand is computed by the dividing the maximum thrust force in the culvert by
the cross-sectional area. The ultimate strength for thrust stress is dependent on the type plastic and the load
duration. Nominal values, taken from the ASSHTO LRFD specifications and elsewhere, are shown in the table
below.
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Table 2.4.2-2 Recommended plastic properties for short and long-term loading

Effective Young’s Modulus Ultimate strength
(PE) (PU)
Type of plastic | Short-term Long-term Short-term Long-term
(ksi) (ksi) (ksi) (ksi)
HDPE — 110.0 22.0 3.00 0.90
PVC - 400.0 140.0 6.00 2.60
PP - 135.0 27.0 3.10 1.00

2. Global buckling. The thrust stress level that causes global buckling may be conservatively approximated from
the simplified AASHTO LRFD equations 12.7.2.4-1-2. A more accurate alternative is to utilize the new large
deformation formulation with buckling capacity prediction available in CANDE-2022 (see Chapter 5).

3. Combined strain. Combined strain means the maximum outer-fiber strain from thrust and bending and the
demand is the largest combined strain anywhere in the culvert. The combined strain limit value (or capacity)
as recommended by AASHTO LRFD specifications is equal to 1.5 times the long-term strength divided by the
long-term modulus. Accordingly, HDPE = 0.06 in/in, PVC = 0.028 in/in. and PP = 0.045 in/in.

4. Allowable tensile strain. This criterion is intended to preclude cracking and crazing under service load due the
maximum outer-fiber tensile strain. The allowable tensile strain as recommended by AASHTO LRFD
specifications is 0.05 in/in for HDPE and 0.035 or 0.05 in/in for PVC depending on cell class.

5. Allowable deflection. Computed deflection is the relative vertical movement between the top and bottom of the
culvert structure, and the percent deflection is relative the vertical distance. The service load value for allowable
deflection is generally taken as 5% of the diameter for all plastic pipes; however, the deflection limit is not
directly specified in the AASHTO LRFD design specifications.

Local Buckling. Local buckling is not a direct design criterion for plastic pipe, but it does influence the demands and
capacities of the design criteria listed above. Similar to corrugated metal pipe wherein some amount of outer fiber yielding
is permitted, some amount of local buckling is permitted in plastic profile pipe. The nonlinear model to account for local
buckling in profile plastic pipe is presented next.

2.4.3 Nonlinear model for local buckling in profile plastic pipe

Although the stress-strain models for all thermoplastic pipe materials are assumed linear and characterized by the elastic
moduli in the above table, local buckling is a nonlinear phenomenon. Local buckling is caused by compressive strains
that induce the elements of profile wall pipe to deform out-of-plane in a wrinkled pattern. Section 12.12.3.5.3 of
AASHTO LRFD specifications provides a methodology to simulate the effect of local buckling by reducing the effective
area of the profile elements dependent upon the average level of compressive strain in each element. This AASHTO
methodology is incorporated into CANDE-2022 as described below.

The geometry of the profile wall is defined with two web elements and up to four horizontal elements (valley, liner, crest

and link) as shown in the figure below. Older versions of CANDE assumed the profile configuration was constant for the
entire pipe group; however, the newer versions permit varying the profile geometric properties within the pipe group.
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Figure 2.4.3-1 Profile wall geometry and sub elements

Period
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Valley (1) Liner (2) Valley (1)

The web element lengths, which form a mirror symmetric pair within each period, are defined to span the distance
between the valley and crest element so that the web elements offer support to the ends of the crest and valley elements.
Hence, the defined length of the crest element is the unsupported span between the web supports plus the length of the
web supports, taken as twice the web thickness. Similarly, the defined length of the valley element is twice the web
thickness plus the unsupported valley span between the web supports. The defined length of the liner element is the
horizontal distance between two valley elements so that the liner’s defined length and unsupported length are identical.
Similarly, the defined length of the link element is the horizontal distance between two crest elements so that the crest’s
defined length and unsupported length are identical.

Given the defined lengths and thicknesses of all elements, the angle of the web elements, and the overall height of the
profile wall, it is a straightforward matter to calculate the initial section properties of the profile wall. The area per unit
length, A*, is equal to the sum of all element areas (lengths multiplied by thickness) divided by the period length. The
wall centroid, y*, is the first area moment taken about the bottom fiber divided by the area. And finally, the moment
inertia per unit length, I*, is the second area moment taken about y* divided by the period length. Thus, in the absence
of local buckling, the beam-column section properties are initially known for the first iteration of the first load step to
provide the first trial solution.

The AASHTO LRFD methodology, which accounts for local buckling by reducing the effective length of the elements
due to compressive strain, is achieved by using the following two equations.

A= (w/t)/(e/k) > 0.673 Equation 2.4-1

where, A = measure of propensity to buckle, called slenderness ratio
w = unsupported length of element
t = thickness of element
€ = average compressive strain in element
k = edge support coefficient (typically taken as 4.0 for fix-ended elements)

p=(1/A)(1-0.22/h) <1.0 Equation 2.4-2

where, p = reduction factor applied to w
pw = remaining unsupported length of element

Each profile element (web, valley, liner, crest and link) is evaluated with above equations. Equation 2.4-1 is evaluated to
compute A using the predicted compressive strain at each element’s centroid as determined from the trial solution. If A <
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0.673, then the compressive strain is not large enough to trigger local buckling for the element under consideration so
that p remains = 1. Otherwise, if A > 0.673, we evaluate Equation 2.4.2 producing a value for p less than 1.0 wherein p is
the fraction of the element’s unsupported length that remains effective in the cross section. Note that the total effective
length for the crest and valley elements also includes the web support thicknesses. The element length measures are
clarified in the table below:

Table 2.4.3-1  Local buckling profile dimensions

Element length | Symbol Derivation Description

measures

Defined length L Defined by user (input) The actual length of the element

Unsupported length w w=L, (for web, liner and link) The free distance between supports
w =L — 2twe, (for crest & valley) where buckling can occur

Effective length Lesr Lesr = pL, (for web, liner and link) The effective remaining length of
Lesr= pw + 2twen, (for crest & valley) | element after local buckling

Since the central portion of each element is the most prone to local buckling damage, we assume the original element
length has effective gap length equal to L - Lt located in the central portion of the element. This assumption is needed
to compute the effective moment of inertia.

Once the effective lengths of the elements have been determined and the location of the gaps understood, it is, once again,
a straightforward matter to calculate the new section properties for the next trial solution as;

A* = Sum of all effective element areas (effective lengths times thicknesses)

y* = Centroid of A* measured from bottom fiber

I* = Sum of all effective element moment of inertias about y*

The above process dovetails with the general nonlinear solution strategy described in Section 2.19 by forming EA* and
EI* where E is the appropriate linear elastic modulus (Table 2.4.2-2). When two successive trial solutions produce the
same compressive stain values within a 0.1% tolerance level for all elements at all nodes, the load step is said to converge
and we proceed to the next load step.
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2.5 Basic Pipe Type

The so-called basic pipe-type is not associated with any particular pipe material. Therefore, it is restricted to linear
material behavior, and it is not associated with any design criteria for evaluating its safety or performance. The material
model is defined by an elastic Young’s modulus and Poisson’s ratio, and the cross-sectional properties are defined an
area and moment of inertia.

If desired, each element in the basic pipe-type group may be assigned different elastic and cross-sectional properties, and
the element group has the option to include large deformation theory and buckling capacity predictions. In addition to
academic studies, the basic pipe-type groups are useful for modeling struts and braces and discrete reinforcement in the
soil mass.

Lastly, if it is desired to use only continuum elements without beam-column elements in particular problem in the
CANDE-2022 program, the basic pipe type is declared in the input with zero elements assigned to the group.

2.6 Conrib Pipe Type

The figure below represents one example of the potential use of the CONRIB pipe type for modeling precast arch units
with ribbed stiffeners along the crown as well as T-shaped stiffeners cast into the supporting pedestal walls. These ribbed
and/or T-shaped stiffeners cannot be modeled with the standard CONCRETE pipe type. Another special feature of the
CONRIB pipe type is an advanced concrete constitutive model that is capable of simulating fiber reinforced concrete in
addition to standard concrete with traditional steel reinforcement.

This section provides a detailed formulation of the CONRIB pipe type using the same presentation outline that is used
for all other pipe-types in this chapter. The reader is referred to the beginning of Chapter 2 to review the general
background development for the beam-column element, which is applicable to all pipe types. Although some of the
aspects of the CONRIB model are similar or nearly identical to the CONCRETE pipe type, the following development
is self-contained without referring the reader the CONCRETE model write-up. The ultimate goal is to derive the
incremental stiffness matrices and nonlinear solution strategy even though some of the derivation is repetitive of the
CONCRETE write-up.
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2.6.1 Overview of CONRIB Model

Concrete cross sections are composed of a uniform slab and a rib stiffener periodically spaced along the slab. The rib
geometry may be specified to form a trapezoid shape, a tee shape, or a smooth wall at the discretion of the user. One cage
of reinforcing steel may be specified for the rib and another for the slab. Reinforcing steel behavior is characterized by
an elastic-plastic stress-strain model, which becomes perfectly plastic when the steel yield stress is reached in tension or
compression.

The concrete stress model is nonlinear in compression, simulated with a tri-linear stress-strain curve. Initially, the
concrete response is linear up to a specified strain level after which the concrete exhibits plastic-hardening behavior.
When the compressive stress reaches the ultimate strength limit (fc’), the stress-strain response becomes perfectly plastic
with no increase in stress as compressive strain increases.

In tension, concrete behavior is linear up to a specified tensile cracking strain limit. Thereafter tensile stress is released
at a rate dependent on another tensile strain parameter called the rupture strain, which introduces some ductility (strain
softening) into the tension side of the model. When tensile strain exceeds the rupture strain, all tensile stress has been
released and the concrete is no longer capable of sustaining any further tensile stress. If the rupture strain is set equal to
the initial tensile cracking strain, then the loss of tensile stress occurs abruptly, which is typical of ordinary plain concrete.
On the other hand, if the rupture strain is specified much larger than the tensile cracking strain, say by an order of
magnitude, the stress loss is gradual and adequately simulates the behavior of concrete mixed with steel fibers.

In summary the CONRIB concrete stress-strain model is identical to the CONCRETE stress-strain model except for the
tension ductility range controlled by the rupture strain parameter. The rupture strain parameter allows the CONRIB model
to simulate the behavior of fiber reinforced concrete, which cannot be simulated with the CONCRETE model.

2.6.2 Design Criteria for CONRIB Reinforced Concrete.

Design criteria for reinforced concrete culverts remain the same irrespective of which concrete stress-strain model is
used, CONRIB or CONCRETE. Specifically, the design criteria include strength limits for yielding of steel
reinforcement, crushing of concrete in compression, diagonal cracking due to shear failure, and radial cracking due to
curved tension steel (also called bowstringing). Finally, a performance limit on the allowable flexure crack width,
typically taken as 0.01 inches, completes the set of design criteria. These design criteria as explicitly listed in Table 2.6.2-
1 faithfully represent the intent and, in some cases, improve the clarity of the design criteria as presented in the AASHTO
LRFD specifications as explained in Reference 23.

Table 2.6.2-1  Reinforced concrete design criteria (CONRIB and CONCRETE).

Design Criterion Demand Capacity

(Strength limits)

(1) Steel yielding (psi) f _=max steel stress f,= yield strength

(2) Concrete crushing (psi) c, . = max compression f'= compressive strength

(3) Shear failure (Ib/in) V__ = max shear force V.= concrete shear capacity
(4) Radial tension failure (psi) t = max radial stress t = ultimate radial strength
(Performance Limits)

(At Service Load)

(5) Allowable crack width (in) CW,_ =maxcrack width | CW,, = allowable (0.01inch)

The above design criteria are equally applicable to working stress or LRFD design methodologies. For the working stress
approach, the demand and the capacity quantities are unfactored, and the design evaluation is given by safety factors
defined as capacity divided by demand. Typically, safety factors on the order of 2.0 are desirable for strength-related
criteria. For the LRFD approach the demand and the capacity quantities are factored and the design evaluation is given
by ratios of demand-to-capacity. Demand-to-capacity ratios less than or equal to 1.0 are acceptably safe. Further
discussion on the design criteria is provided below.
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Steel yielding. The maximum steel-stress demand is computed directly from the nonlinear reinforced concrete
model. On the capacity side, the steel yield strength is an input or default value, nominally 60,000 psi for
deformed bars and 65,000 psi for smooth wire fabric.

Concrete crushing. On the demand side, the maximum outer-fiber concrete compressive stress is determined
directly from the reinforced concrete model as a result of thrust and compression bending. The ultimate
compressive strength or capacity is an input or default value typically in the range of 4000 to 6000 psi.

Shear failure. The maximum shear-force demand is computed directly from the beam-column internal forces.
Shear-force capacity is the shear force causing diagonal tension failure at a given cross-section. AASHTO LRFD
specifications prescribe three different shear-force capacities depending on structural shape and burial depth.

e For concrete pipes and arches, the shear capacity is specified by Vmax = Equations 12.10.4.2.5,
which yield variable values for shear capacity dependent on the values for moment, thrust and
shear around the culvert wall.

e For boxes and 3-sided structures with 2 or more feet of soil cover, the shear capacity is specified
by Vmax= Equations 5.14.5.3-1 wherein the value is dependent on moment and shear (not thrust).

e For boxes and 3-sided structures with less than 2 feet of soil cover, the shear capacity is specified
by equations in Section 5.8.3.3 that, in some cases, depend on the nature of the traverse
reinforcement (stirrups).

Clearly there is a need to unify the AASHTO shear-capacity equations because rational mechanics indicates that
shear capacity should be a function of the cross-section properties and state of loading, not on the culvert shape
or depth of burial. CANDE allows the user to select among the three choices for shear-force capacity, however,
Equation 12.10.4.2.5 is considered the best predictor of shear-force capacity because of the large experimental
database (Reference 14).

CANDE also provides the option to choose the traditional shear-strength method where shear-strength = B\/f—c'
where f is a specified factor, typically = 2.0.

Radial tension failure. On the demand side, the concrete radial tensile stress is caused by tensile forces in curved
inner cage reinforcement steel as it tends to straighten out and exerts radial tensile stresses on the interior
concrete cover thickness. The phenomenon is sometimes called bow stringing. CANDE predicts the radial
tensile stress by dividing the interior cage steel force (maximum tensile force per unit length) by the radius of
curvature of the steel cage, i.e., letting A, = steel area per unit length., we have;

t =Af_/Radius Equation 2.6-1

S§T max

The ultimate radial stress is related to the tension strength of concrete and the structure span. The radial tensile
strength capacity is adapted from AASHTO LRFD Equation 12.10.4.2.4c-1. and restated in psi units as:

t, = 37.92,/f./1000 F, Equation 2.6-2

where Fiis a scale factor dependent on structure span, specified in the contents of AASHTO LRFD Equation
12.10.4.2.4c¢-1.

Allowable crack width. The allowable crack width at service loading is generally taken as 0.01 inches in
accordance with AASHTO LRFD specification 12.10.3. CANDE offers three empirical formulas to predict

crack width; the traditional Gergely-Lutz formula (Reference 16), the recently developed Heger-
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McGrath formula (modified form from Reference 15), and a simple concrete strain-based formula proposed by
Katona.

The Gergely-Lutz and Heger-McGrath equations are similar in form and are driven by the computed tension

steel stress when it exceeds fy, the threshold stress for initial cracking. Their crack width predictions are concisely
stated in the equation below,

CW =S(f,- £,)>0 Equation 2.6-3

where, CW = the crack width in inches,
f; = computed tension steel stress in psi,
S and fy = model parameters specified in the table below.

Table 2.6.2-2  Crack width model parameters S and fp

Gergely-Lutz Heger-McGrath
S =(0.122x10%) (2ty?s;)'"3 S =(0.333x10°°) (tys1/ 2n)'"3
where, where,
tp, = concrete cover thickness (inches) t, = concrete cover thickness (inches)
s1 = spacing between rows of steel (inches). s1 = spacing between rows of steel (inches)
n = number of steel layers in the tension zone
(1or2)
— 2 U
b= 5.000. fo=31.6Ci (02 £, /p
where,
C; = 1.0 for smooth wire, 1.5 for welded wire
fabric, and 1.9 for deformed wire/bars.
h/d = total concrete thickness —to- effective
height (tension steel to other face)
p = reinforcement area ratio (As/h).

The Heger-McGrath prediction is well calibrated for predicting crack widths near 0.01 inches; however, it tends to
underestimate the prediction of smaller crack widths. The Gergely-Lutz formula is more accurate in predicting
smaller crack widths.

The concrete strain-based crack width prediction is given by,

CW = LS (Stension - 8cra(;k) Equation 26-4
where, g . = computed tensile strain in outer fiber of concrete.
€. = tensile strain at initial concrete cracking, a concrete model property.

Ls = characteristic length for crack spacing, nominally about 10 inches.

This crack width prediction is useful for fiber-reinforced and plain concrete or when there is no tension steel to drive the
Heger-McGrath or Gergely-Lutz crack width predictions.

2.6.3 CONRIB concrete model.

As shown in Figure 2.6.3-1, the CONRIB concrete model is a tri-linear curve in compression exactly the same as the
CONCRETE model for plain concrete. In the tension zone, however, the CONRIB model has the capability of simulating
varying amounts of ductility depending on the values assigned to the initial cracking strain and rupture strain parameters.
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If the rupture strain parameter is set equal to the initial tension cracking strain, then there is no ductility and the CONRIB
model behaves like plain concrete with an abrupt loss of all tensile stress once the initial cracking strain is reached. On
the other hand, if the rupture strain parameter is assigned a value larger than the initial cracking strain, the model exhibits
a ductile behavior with a gradual loss of tensile stress such that the larger the value of the rupture strain the greater the
amount of ductility.

Figure 2.6.3-1 Concrete stress-strain model and parameters.

Stress (" Tension

Strain softening
tl ___________ 5 ductility

Strain

&

Primary model input parameters are defined below along with typical values shown in parenthesis

€ ¢ = concrete strain at onset of unconfined compressive strength (0.002 in/in)
€ y = concrete strain at initial elastic limit in compression (0.0006 in/in)

€ ¢ = concrete strain at initial tensile cracking (0.0001 in/in)

€ » = concrete strain at tensile rupture (0.0001 to .01 in/in)

f.’ = unconfined compressive strength of concrete (4,000 psi)

Ei = Young’s modulus of concrete in linear zone (3,800,000 psi)

Using the above input variables, four additional parameters are derived as follows:
Ex=('-Eiey)/ (e -ey) = Young’s modulus in compression yielding zone
fy.= Ei&y, =compressive stress at initial yielding (2,000 psi)
fi= Ei| & = tensile strength at initial cracking and rupture (380 psi)

E;=-f/ (e .- &) = tension-softening modulus (negative)

The following material constants are used for plane strain conditions:

v, = Poisson ratio for concrete
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E.=E,/(1-v.)= effective plane strain modulus of concrete in elastic zone
E.=E,/(1-v*) = effective plane strain modulus in concrete yield zone

E.= E,/(1-v?) = effective plane strain modulus in ductile softening zone

The above model has the following behavior characteristics. For initial compression loading, the concrete behaves
linearly until the stress level reaches the initial yield strength f . after which plastic hardening begins to occur in the
yield zone. Perfect plasticity occurs when the stress level reaches compressive strength f.’. Unloading is elastic and with
permanent plastic strain, and reloading is elastic until the stress reaches its previous maximum value after which it follows
the original stress-strain curve.

In tension, the concrete is linear until the initial tensile strain exceeds the cracking strain limit € . After tensile cracking
occurs, the tensile stress is reduced in the softening range at a rate depending on the softening modulus (negative value).
Finally, when the strain exceeds the rupture strain all stress is released inferring that all fibers bridging the crack are
broken or pulled out. When this occurs, the crack is assumed not to heal so that there is no future tensile strength at this
point. However, if the strain is reversed prior to reaching the rupture strain, then the remaining tension stress is preserved
and the ductile zone is characterized with a reduced tensile strength for future tensile loading.

2.6.4 Reinforcement steel model
The assumed stress-strain behavior for reinforcing steel is shown in Figure 2.6.4-1.

Figure 2.6.4-1 Stress-strain model for reinforcing steel.
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Steel behavior is assumed to be elastic-perfectly plastic defined by the input variables:

Eo = Young’s modulus for steel
fy = steel yield strength

Behavior in compression and tension is identical so that material is elastic whenever the stress magnitude is less than the
yield strength. Non-hardening plastic flow occurs when the stress attempts to exceed the yield strength. Unloading from

the plastic range is elastic and results in permanent plastic strains.

For the purposes of a plane-strain formulation, the steel modulus is denoted as;

E,, =E,/(1-v,,*) = effective plane-strain modulus of steel
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U, = Poisson ratio for steel

2.6.5 Concrete cross-section geometry

Figure 2.6.5-1 shows one period of concrete rib wall with steel reinforcement located near the inner face (bottom) and
the outer face (top). Although not shown, the alternative orientation is with the rib pointing in the outward direction,
which is developed in the same manner as the orientation shown below.

Figure 2.6.5-1 Section geometry of reinforced concrete rib wall
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Geometric measures of the general concrete rib section are defined below. (Note that a smooth wall section is obtained

by setting 15 = rw = 1j.)

15 = rib spacing on centers along culvert length
Iw = rib width at bottom

1j; = rib width at junction with slab

h = total concrete wall thickness, rib plus slab
h; = concrete rib thickness

hs = h — h; = concrete slab thickness

Steel reinforcement parameters are defined below.

Asi = area of steel in rib divided by actual rib width through steel centroid
Ao = area of steel in slab per unit length of slab
yi = ¢; = distance to centroid of Ay from bottom face

Vo = h — ¢, = distance to centroid of Ay, from bottom face

2-37



Chapter 2 — Beam-Column Elements-Pipe Type Models CANDE-2022 Solution Methods and Formulations.
MGK

Note that for ease of input, the steel area in the rib Asi is defined as area per unit length of rib, not per unit length of the

period. Therefore, the rib area as input is corrected to the common rib spacing value for computing section properties as
follows.

A= (/1) A Equation 2.6.5-1

where, 1. =rw+ (yi/h)(1; - rw) = rib width at level of steel centroid.

With the above understandings, the uncracked, transformed, elastic section properties for area stiffness, neutral axis and
bending stiffness are computed as follows.

r.+r
EA*=E_(h,+ %hr + (n-1)(A,+A,)) Equation 2.6.5-2
I"—'_rw 2
y* = (h,(h+h /2) + J3—hr +(n-1)(y, A +y,A_)VA* Equation 2.6.5-3
rS

3r.+r 2r.+r

El*=E_[(h’-h’)/3 - y*(h*-h *)+y**(h-h )+ ——"h - y*—1 "h?
12r, 3,
2 I'j—’_rw 2 2 .

+ y* 2—hr+ (n-1)(A, (y,-y*) A (v,-y9) )] Equation 2.6.5-4

S
where, n = Eg/E. = ratio of steel modulus to concrete modulus (transform method).

The uncracked, transformed elastic section properties are used for the first iteration of the first load step to obtain a trial
solution. If the loading does not cause cracking, concrete yielding or steel yielding, then the section properties as currently
computed are correct, and the next load step is considered. More generally however, nonlinear responses are observed
and iteration within the load step is required to obtain the solution as described next.

2.6.6 Nonlinear solution strategy.

We assume we have a converged solution at load step i and we seek an incremental solution for load step i +1. Using the
values of EA*, y* and EI* from the previous load step, a trial solution is obtained for the first iteration thereby providing
new estimates of the strain distribution at each reinforced concrete cross-section. To compute the next estimate for EA*,
y* and EI*, numerical integration is used over the concrete wall section to cope with nonlinear chord modulus as
illustrated in the figures below.
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Figure 2.6.6-1 Strain profile from step i to i+1 and 11-point Simpson integration
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Concrete chord modulus. The effective chord modulus, E’, from the known stress-strain state (o, €i) to the estimated
stress-strain state (oi+1, €i+1) is computed at each integration point using the concrete stress-strain curve previously
illustrated in Figure 2.6.3-1. As discussed in the following sections, the chord modulus is determined iteratively.

The Figure 2.6.6-2 illustrates various chord moduli, E’, which connects a known starting point (c; €;,) to the estimated
end point (oi+1, &+1). Here, €i+1 is obtained from the trial incremental solution, &i+1 = & +Ag, and 6i+1 is the corresponding

stress determined from the stress-strain relationship as quantified in the Table 2.6.6-1.

Figure 2.6.6-2 Illustration of concrete chord moduli in zone transitions
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Table 2.6.6-1. Concrete chord modulus and ratio for specified starting and ending zones.
Starting Zone Ending Zone Corresponding Chord modulus Modulus ratio
€ €+l Stress E' F'(y)=E' E.
Oi+l1
elastic elastic ci + EcAg E. =1.0
elastic yield fy + Ec(&i+1 - &) (oi+1- 61)/ Ae <1.0
elastic plastic f' (f' - 03)/ Ag <1.0
yield more yield ci + EcAg E. =EJ/ Ee
yield plastic f' (f' - 03)/ Ag <EJ/E.
plastic more plastic f' 0.0 =0.0
compress zone unloading ci + EcAg E. =1.0
elastic soften fi + Es(gir1 — &) (oi+1- 61)/ Ae <1.0
soften more soften ci + EsAe E <0.0
soften rupture 0.0 -oi/ Ag <0.0
rupture more rupture 0.0 0.0 =0.0

In the above table, the concrete-modulus ratio is defined as the chord modulus divided by the initial elastic modulus, F'(y)
= E'E.. Thus, F'(y) varies through the cross-section including negative values for integration points in the softening
range.

Elastic unloading occurs from any compression zone whenever | €i+1 | < | € | with the provision that neither strain is in
the softening or rupture zone.

Once a point in the cross section begins to crack, the initial tensile strength is permanently reduced to the corresponding
stress value on the softening leg of the stress-strain curve. Physically this means some tension damage has occurred
changing the shape of the stress-strain path in the tension zone. When the tensile strain exceeds the rupture strain, the
tension damage is complete and the stress-strain path is completely flat in tension for all future tensile loading conditions,
implying the crack does not heal.

The above algorithm requires maintaining data records at each integration point to keep track of the cracking history and
tension damage. It is also required to maintain a data record of plastic straining in compression in order to properly
simulate unloading and reloading.

Steel chord modulus. Reinforcing steel is lumped at the inner and outer cage locations, measured by y; and y,. The chord
modulus for steel at either location is easily deduced from the elastic-plastic relationship as shown in the following table.

Table 2.6.6-2.  Steel chord modulus and ratio for specified starting and ending zones.
Starting Zone Ending Zone Corresponding Chord modulus Modulus ratio
€ €ir1 Stress E/ W'=E{/ Eq
Oitl
elastic elastic oi + EqxAg Eq 1.0
elastic plastic fy (fy - o9/ Ag <1.0
plastic plastic fy 0.0 0.0
unloading elastic oi + EsAg Eq 1.0

In the above table, the steel-modulus ratio is defined as the chord modulus divided by the initial elastic steel modulus,
W' =E/ Eg, where the ratio is in the range, 0 < W'< 1.

To summarize, the relationships for chord moduli of concrete and steel are listed below:

E'(y) = E_F'(y) = concrete chord modulus at location y

E;i =E, VVi' = steel chord modulus at inner cage location, yi.
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E!, =E_ W/ = steel chord modulus at outer cage location, ys. Equation 2.6.6-3
Re-expressing the steel chord moduli with concrete-transform parameters, we have

E; =n,E W/ Equation 2.6.6-4
E, =nEW, Equation 2.6.6-5
where, n., n =E_/E_-1, ifconcrete is not cracked around the steel

n;, n = ESt /E .» if concrete is cracked around the steel

[73%1)

The transform method expresses the elastic steel modulus as a multiple “n” of the concrete elastic modulus with the
understanding that the uncracked concrete area needs to be reduced by the steel area to avoid double counting areas. On
the other hand, if the concrete is already cracked then further reduction of concrete area by the steel area is not required.

Computing section properties. Section properties require area integration over the concrete cross section. To this end,
the differential area is expressed as dA = b(y)dy where b(y) is the effective cross-section width per unit length as defined
below.

1.0, if y is in the slab zone

b(y) = Equation 2.6.6-6

(r, +%(rj t,))/t., if y is in the rib zone

With the above understanding, the equations for the key section properties are expressed in transformed parameters as
follows.

h
EA* =E, ([ F(y)b(y)dy + n,WA; +n,W,A,) Equation 2.6.6-7
0
h
y* = ([ F(y)yb(y)dy + n, WAy, +n,W,A_y, )/A* Equation 2.6.6-8
0

h
_ ’ 2 2 2
El* = E, (| F(5)(y-y*)’by)dy + 0, WA v,y +1n,W,A (voy*)’)
0 Equation 2.6.6-9
The integrals over the concrete wall thickness are achieved with 11-point Simpson integration to evaluate the following

three sums where F'(y;) < 1.0 is the concrete modulus ratio at integration point i, and b(y;) < 1.0 is the effective cross-
section width per unit length.

S, =I F(y)b(y)dy = W/30[F'(y,)b(y, )4F (y, )b(y, J+2F (y,)b(y, )+.. +F (y, )b(y, )]
0 Equation 2.6.6-10

S,=[ F(y)yb(y)dy = W30[F'(y,)y,b(y, )H4F (v, )y,b(y,F2F (v,)y,b(y, - F (¥, )y, by, )]

Equation 2.6.6-11

S,=[ F(y)y’by)dy = h/30[F'(y, )y, by, JH4F'(y,)y, by, FF2F (3, )y, by, b +F (3, )y, by, )]

Equation 2.6.6-12
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Using the above integration results, the final results for the key section properties are expressed as,

EA*=E (S, +n WA, +n WA ) Equation 2.6.6-13
y*=(S, +nWA_y, +n W A_y )A* Equation 2.6.6-14
EI* = E_(y*S,-2y*S,+S, + n,WA_(y,-y*)* +n, W, A_ (y,-y*)’) Equation 2.6.6-15

The above calculations are carried out in subroutine Conmax, which is called by subroutine Conrib. Iterations within the
load step continue until successive calculations for EA*, y* and EI* are within 1% relative error for all cross sections.

2.6.7 CONRIB Model Behavior and Parameter Identification

When comparing the stress-strain models of plain concrete model with the ductile CONRIB model, it may seem that the
load capacities of the two models would be the same if the tensile strength and compressive strength were the same.
Indeed, this observation is true for test specimens loaded in pure axial tension or pure axial compression. For these cases,
the ultimate axial load is easily computed as recorded below and is independent of ductility parameters.

T= flA = ultimate tensile load Equation 2.6.7-1

C= fC’A = ultimate compressive load Equation 2.6.7-2

where, f, = tensile strength of concrete

4 .
fC = compressive strength of concrete

A = cross-sectional area of the test specimen.

However, for a test specimen loaded in pure bending, it is quite remarkable that the ultimate moment capacity of the
ductile CONRIB model is appreciably greater than the plain concrete model depending on the value of the ductility strain
ratio defined as follows.

r=g, / €, = ductility strain ratio (r > 1) Equation 2.6.7-3

where, €, = rupture strain

€, = initial cracking strain

When the ratio r = 1, there is no ductility and the CONRIB model behaves like plain concrete, exhibiting an abrupt loss
of the internal moment once the initial cracking moment is reached. However, for r > 1, the moment capacity increases
with r and exhibits gradual strength loss.

2.6.8 Derivation of moment capacity in pure bending

Consider a beam specimen in pure bending with a rectangular cross-section of height h and width b as shown in Figure
2.6.8-1. Because planes remain plane in bending, the strain profile is linear through the height of the cross section for all
load levels as shown in the figure. The linear strain profile &(y) is completely defined by two points for which we choose
the bottom fiber and the neutral axis.

e* = X€, = specified strain at bottom fiber, y = 0

zh = location of neutral axis at which g(zh) =0
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where x = specified multiplier of tensile cracking strain.
z = fraction of h locating neutral axis.
y = vertical coordinate, 0 <y <h

Figure 2.6.8-1 Linear strain profile over cross section driven by the bottom strain, £*

Ya
e(y) = €*(1 — y/zh)
h
zh
b —E*=x£.—>{
Cross section Strain profile

At the bottom fiber, the strain is prescribed as € (0) = €* where €* is quantified by an x-multiplier of the initial cracking
strain (e* = xgy. The location of the neutral axis z (as a fraction of h) is dependent on the resulting stress distribution in
the cross section such that the net tensile force from 0 to zh is equal to the net compressive force from zh to h. Recall that
the tensile stresses are described by the three piecewise linear regions as shown below.

Figure 2.6.8-2 Tension portion of CONRIB model with ductility (fiber reinforcement)
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With the above understanding, the applied maximum tensile strain on the bottom fiber €* is in one of three ranges
depending on the magnitude of x.

1. &*is in the uncracked elastic range, 0 <x <1
2. ¢*isin the softening range, 1 <x <r
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3. &* exceeds the rupture strain, r <x < o0

CANDE-2022 Solution Methods and Formulations.

The corresponding stress distributions for these three ranges are illustrated in Figure 2.6.8-3 wherein it is reasonably
assumed that maximum compressive stress in the top fiber remains within the elastic range.

Figure 2.6.8-3  Stress distributions corresponding to the three ranges of £*
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Since the stress profiles are due to pure bending, the neutral axis (z-fraction of h) is found by equating the net tensile
force to the net compressive force. The center column in Table 2.6.8-1 gives the equation for z as a function of x and r.

Table 2.6.8-1

Neutral axis location and internal moment values as a function of x and r

Range of x-multiplier

Neutral axis location

Internal Moment

(e*=x¢81) (zh) (M, = £ibh?/6)
Linear range
0<x<1 z=1/2 M =M;x

Softening range

z = (1+a)2 ~ 1)a

M= M(2(1-z)’x/z +

l<x<r 2Gr-2x-t2)/(r-1)]
where, a= (x-1)/(r-1)/x* — 1+
Qr-x-D/(r-1)/x
Rupture range
r<x<ow z =1/(1 +1"%/x) M = My[2x(1-2)¥/z + Z*(r*+1)/x?]

After determining the location of the neutral axis, the internal moment is computed by multiplying the force resultants
times the lever-arm distance to the neutral axis. The last column in the above table gives the equation for the resulting
moment as a function z, x and r and the initial cracking moment as defined below.

M, = ftbh2/6 Equation 2.6.8-1

M is the moment that causes initial tensile cracking on the bottom fiber when x = 1 and is the maximum moment capacity
for the case r =1 (plain concrete).
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Except for the linear range, the equations for the internal moment do not lend themselves to easy interpretation without
graphical aid. Figure 2.6.8-4 shows plots of the non-dimensional moment, m(x) = M/Mj, for a family of ratios, r = 2, 5,
10, and 20. All families trace the same straight line in the linear range 0 < x < 1, then diverge into separate bell-shaped
curves in the softening range 1 < x <r, and asymptotically approach zero in the rupture range, r < x < oo. It is evident
that the peak moment (maximum moment capacity) occurs in the softening range and increases with r. For r = 20, it is
observed that the moment capacity is 1.8 times that of plain concrete.

Figure 2.6.8-4  Moment ratio versus applied strain for a family of r-values.
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The foregoing development illustrates the increase in bending moment capacity is 80% as the ductility strain ratio
increases modestly from 1 to 20. For steel fiber reinforced concrete, experimental evidence indicates that r-values can be
as high as 500 or more depending on the percentage and type of steel fibers. Figure 2.6.8-5 shows a plot of the non-
dimensional moment capacity as a function of log(r) wherein it is observed that the theoretical limit of moment capacity
is 3.0M; as the ratio r approaches infinity.

Figure 2.6.8-5 Maximum moment capacity versus strain ductility ratio r
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2.6.9 Model parameter identification

The compression parameters of the CONRIB stress-strain model may be determined from standard load-deformation
tests (P-A) on cylindrical compression specimens in the same manner as ordinary concrete. Specifically, the compression
parameters are determined as follows.
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! .
f. =P /A =compressive strength
& = A c /L = strain at initial compressive strength
&, = Ae/ L = strain at initial yield (end of elastic range)
E, = (P,/A)/e, = Elastic Young’s modulus
where, Pe , Pmax = load at end of elastic range, and ultimate load, respectively
A o A . = deflection at end of elastic range, and at ultimate load, respectively.
A = cross-sectional area of test specimen

L = length of test specimen

Tension strain parameters & and &, are best determined from beam bending tests in three-point loading as illustrated in
Figure 2.6.91. The objective is to determine the beam loading levels indicated in the load-deformation plot as defined
below.

Pt = beam load causing initial tensile cracking.

Pmax = beam load at maximum capacity.

Figure 2.6.9-1 Experimental test for tension strain parameters €t and er

L3 i L3 i L/3 b

I

Load P Poax

— Py

Y

Deflection A

2-46



Chapter 2 — Beam-Column Elements-Pipe Type Models CANDE-2022 Solution Methods and Formulations.
MGK

Knowing the beam load causing initial tensile cracking, the initial cracking strain parameter is determined from simple
beam theory by assuming the beam is uncracked and linear elastic as shown below

2PL
€ = 2
E_bh

¢

Equation 2.6.9-1

where L =beam length
b = beam width
h = beam height

Lastly to determine the value of the rupture strain, we make use of the development in the previous section by determining
the moment ratio and using Figure 2.6.8-5 to find ductility ratio r from which we obtain &, Specifically the steps are,

1. Evaluate experimental moment ratio as, m=M_ /M =P_ /P,
2. Enter Figure 2.6.8-5 with “m-value” and read log(r) value.

3. Recover r value as, r = log™ (log(r))
4

Compute rupture strain as, &, =g r

This completes the section on the CONRIB model.
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2.7 Contube Pipe Type

The figure below shows a contube system that may be generally regarded as a long-span culvert system that is an
alternative to other soil-bridge concepts such as monolithic reinforced concrete arch units or field-assembled corrugated
metal arches. The unique feature of this system is that the arches are spaced at discrete intervals and composed of
concrete-filled FRP tubes. The acronym CONTUBE refers to the circular concrete cross section contained in a thin-
walled tube.

COMPOSITE
DECKING

£

. SIDE WALL

TUBE ENDS
ENCASED IN
CONCRETE CONCRETE
= ; FOOTING
COMPOSITE ARCHES § o
TUBING

CONCRETE
CORE

Another application of the CONTUBE pipe type is to represent a row of piles supporting the footing of a culvert system.
Additional applications are provided in AASHTO publication, “LRFD Guide Specifications for Design of Concrete-filled
FRP tubes for Flexural and Axial Members, 1° edition 2012”.

This section provides a detailed formulation of the CONTUBE pipe type using the same presentation outline that is used
for all other pipe-types. The reader is referred back to Section 2.1 of this manual to review the general background
development for the beam-column element, which is applicable to all pipe types. Here the ultimate goal is to derive the
incremental axial stiffness EA* and bending stiffness EI* along with the nonlinear solution strategy for CONTUBE.

2.7.1 Overview of CONTUBE Model

The overall cross-sectional geometry is shown in the figure below which is completely defined by three measurements;
D, t and S as shown in the figure below.
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| |
l«—Spacing period———>!

Where, D = diameter of concrete core
t = thickness of tube
S = spacing of tubes on center

The concrete stress-strain model is nonlinear in compression, simulated with a tri-linear stress-strain curve. In tension,
concrete behavior is linear up to a specified tensile cracking strain limit. Thereafter tensile stress is released at a rate
dependent on a tensile strain parameter called the rupture strain. Details of the concrete stress-strain model are
discussed in a subsequent section.

The FRP tube is modeled as a linear elastic material in tension and compression for all levels of stress. However,
specified stress-strength limits are used in the CANDE program to assess whether or not the maximum tube stress is
beyond safety limits (design criterion).

2.7.2 Design Criteria for Concrete and Tube

CANDE prints out an evaluation of all appropriate design criteria at the end of each load step so that the user may assess
the structural safety throughout the loading process. The design criteria in Table 2.7.2-1 are in general accordance with
AASHTO publication, “LRFD Guide Specifications for Design of Concrete-filled FRP tubes for Flexural and Axial
Members, 1*' edition 2012”.

Table 2.7.2-1  Proposed design criteria for CONTUBE

Design Criterion Demand Capacity

(Strength limits)

(1) Tube stress failure (psi) f = max tubestress f, = tube strength

(2) Concrete crushing (psi) o =maxcompression | f'=compressive concrete strength
(3) Combined shear failure(Ibs.) V . = maxshear force | V = combinedshear capacity
Performance Limits

(At Service Load)

(4) Allowable crack width (in) CW__ = max width Cw,,,, = allowable (0.01 inch)

The above design criteria are equally applicable to working stress or LRFD design methodologies. For the working stress
approach, the demand and the capacity quantities are unfactored, and the design evaluation is given by safety factors
defined as capacity divided by demand. Typically, safety factors on the order of 2.0 are desirable for strength-related
criteria. For the LRFD approach, the demand and the capacity quantities are factored and the design evaluation is given
by ratios of demand-to-capacity. Demand-to-capacity ratios less than or equal to 1.0 are acceptably safe. Further
discussion on the design criteria is provided below.
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(1) Tube failure. The maximum outer-fiber tube stress demand is determined from the computed beam-column
strains at the inner and outer fibers multiplied by the tube’s linear-elastic Young’s modulus. On the capacity
side, the tubes strength is an input value, nominally 150,000 psi.

(2) Concrete crushing. On the demand side, the maximum outer-fiber concrete compressive stress is determined
directly from the nonlinear concrete model as a result of thrust and bending. The ultimate compressive
strength or capacity is an input or default value, typically 6000 psi.

(3) Shear failure. The maximum shear-force demand acts on the combined concrete-tube cross section and is
obtained directly from the CANDE solution output. The ultimate shear capacity is the combined sum of the
tube and the concrete resistances, given by;

Vi = BVEA acked T T A e Shear capacity equation

where, § = concrete-shear factor typically in the range of 2 to 5 (producing psi units)
f.’ = concrete compressive strength (psi units)
Auncracked = uncracked area of concrete computed by CANDE (in?)
f, = shear strength of tube cross section (psi)
Auwbe = cross sectional area of tube material (in?)

Note, Auncracked 18 determined accurately based on the computed crack depth.
(4) Allowable crack width. The allowable crack width at service loading is generally taken as 0.01 inches for

unconfined concrete (AASHTO 12.10.3); however, much higher values may be reasonable for CONTUBE.
CANDE’s empirical strain-based crack width prediction is given by,

CW = LS (Stension - Scrack) Crack width equation

where, € = computed tensile strain in outer fiber of concrete.

tension

€ = tensile strain at initial concrete cracking, a concrete model property.

crack

LS = characteristic length for crack spacing, nominally about 10 inches.

Note that crack width is an approximation whereas crack depth is determined from first principles.

2.7.3 Concrete stress-strain model.

As shown in Figure 2.7.3-1, the CONTUBE concrete model is a tri-linear curve in compression exactly the same as the
CONCRETE model for plain concrete. In the tension zone, however, the CONTUBE model has the capability of
simulating varying amounts of ductility depending on the values assigned to the initial cracking strain and rupture strain
parameters. If the rupture strain parameter is set equal to the initial tension cracking strain, then there is no ductility and
the CONTUBE model behaves like plain concrete with an abrupt loss of all tensile stress once the initial cracking strain
is reached. On the other hand, if the rupture strain parameter is assigned a value larger than the initial cracking strain, the
model exhibits a ductile behavior with a gradual loss of tensile stress such that the larger the value of the rupture strain
the greater the amount of ductility.
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Figure 2.7.3-1 Concrete stress-strain model and parameters.
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Primary model input parameters are defined below along with typical values shown in parenthesis

€ = concrete strain at onset of unconfined compressive strength (0.002 in/in)
gy = concrete strain at initial elastic limit in compression (0.0006 in/in)

g = concrete strain at initial tensile cracking (0.0001 in/in)

& = concrete strain at tensile rupture (.001 in/in)

f.’ = unconfined compressive strength of concrete (6,000 psi)

E. = Young’s modulus of concrete in elastic zone (4,700,000 psi)

Using the above input variables, four additional parameters are derived as follows:

E>= (f.'— Ec &) / (& - &) = Young’s modulus in compression yielding zone
fye = Ec &y = compressive stress at initial yielding (3,000 psi)

fi= Ec & = tensile strength at initial cracking and rupture (470 psi)

E; = - fi /(& - &) = tension-softening modulus (negative)

The above model has the following behavior characteristics. For initial compression loading, the concrete behaves
linearly until the stress level reaches the initial yield strength fy. after which plastic hardening begins to occur in the yield
zone. Perfect plasticity occurs when the stress level reaches compressive strength f.. Unloading is elastic and with
permanent plastic strain, and reloading is elastic until the stress reaches its previous maximum value after which it follows
the original stress-strain curve.

In tension, the concrete is linear until the initial tensile strain exceeds the cracking strain limit €. After tensile cracking
occurs, the tensile stress is reduced in the softening range at a rate depending on the softening modulus (negative value).
Finally, when the strain exceeds the rupture strain all stress is released at this point. When this occurs, the crack is assumed
not to heal so that there is no future tensile strength at this point. However, if the strain is reversed prior to reaching the
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rupture strain, then the remaining tension stress is preserved and the ductile zone is characterized with a reduced tensile
strength for future tensile loading.

2.7.4 Tube stress-strain model
The assumed stress-strain behavior for FRP tube material is shown in Figure 2.7.4-1. Tube material is assumed to be

linear elastic at all stress levels and behavior in compression and tension is identical. Nominal failure strengths are defined
for evaluation of design criteria; however, the actual CANDE model is always linear elastic. Thus, the input parameters
are

E: = Young’s modulus for tube

fy = Nominal axial failure strength (evaluation only)

f, = Nominal shear failure strength (evaluation only)

It is noted that the Young’s moduli of the concrete and the tube are not converted to the standard plane-strain form using

the Poisson factor, 1/4/1-n” . This is because the arch tubes are spaced at a periodic distance S, which is better represented

by a plane-stress assumption.

Figure 2.7.4-1 Linear-elastic stress-strain model for tube material.
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2.7.5 Section stiffness properties for CONTUBE

Shown in the figure below is the composite CONTUBE cross-section configuration wherein the coordinate y is measured
from the bottom concrete-tube interface. The variable y* denotes the distance to the neutral axis and is also referenced
to the concrete-tube interface at the base. Thus, prior to concrete cracking or any nonlinear behavior, y* is at the centroid
of the CONTUBE cross-section, i.e., y* = D/2.
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Figure 2.7.5-1 Composite CONTUBE cross section.

S = tube spacing on center
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As stated in Section 2.1.9, the key section properties are; EA*(effective axial stiffness), y* (location of current neutral
axis) and EI*(effective bending stiffness). These properties are the heart of all pipe type algorithms and are specialized
in the following equations for the CONTUBE cross-section. Integrals representing concrete properties are denoted with
a subscript ¢ and integrals representing tube properties are denoted with a subscript t.

EA* = I E'dA:. + J. EdA, |/S Effective axial stiffness (Ibs/inch)
Ac At

y*=( j E'ydA, + j E,ydA, )/ EA* Neutral axis (inches)

Ac At

El*=| [ E'(y*y)dA+ [ E,(y*y)’dA, |/S Effective bending stiffncss (in-Ibs/inch)
Ac At

In the above equations Young’s modulus for concrete is denoted by E' implying that it is variable quantity within the
cross-section. Later, E' is defined in detail in the context of a chord modulus.

Tube section properties (always elastic). Since the tube material is assumed to be linear elastic, the three tube integrals
listed above may be integrated exactly to get the solutions for once and for all:

I E.dA, = E n(D+t)t Tube axial stiffness

At

I E .y dA,=E n(D/2)(D+t)t  Tube 1st moment about interface at base

At
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_[ E, (y*-y)'dA,= Etn[(y* - D/ 2)2 (D+t)t + Tube bending stiffness about y*
A

(D/2+t)*- (D/2)*
4
Note that y* is dependent on combined influence of the concrete and the tube together. Therefore, the tubes contribution
to the total moment of inertia (last equation) is coupled with the nonlinear concrete behavior via the variable y*.

Initial concrete section properties. Initially, when the concrete is unloaded and uncracked, the section properties for
area, 1% moment, and moment of inertia are easily calculated. Again, referring to Figure 5.3.3-1, the three integrals for
concrete in the linear range are evaluated below.

I E.dA. = E n(D/2)° Linear-elastic concrete axial stiffness
Ac
J‘ E.y dA,=E_ n(D/2)*(D/2) Linear-elastic concrete 1t moment
Ac

4
[ E.yrda, = Een((y*z- (D/2)2)(D/2)2+%j — E_xD* /64
Ac

Linear-elastic concrete bending stiffness about y*

When both the tube and the concrete are in the linear-elastic range, we have y*=D/2 so that the concrete contribution to
the total bending stiffness is given by right most expression in the last equation.

Composite elastic properties per unit length. The CANDE plane-strain formulation requires that the elastic properties
of the combined tube and concrete section properties be divided by the spacing distance S. Thus, the combined elastic
properties per unit length for axial stiffness, neutral axis and bending stiffness are prescribed as follows.

EA* = (Etn(D-i-t)t +E_n(D/2)° ) /S Combined elastic axial stiffness

y* = D/2 Combined neutral axis (elastic)
v 4 4

E[* = (Etn((D/z 9 - (D/2) )+ Een(%)j /S Combined elastic bending stiff.

The above composite section properties are valid as long the concrete does not enter the nonlinear range either by initial
cracking or concrete compression yielding. When the concrete enters the nonlinear range, we invoke the nonlinear
algorithm described below which means that section properties EA*, y* and EI* must be iteratively recomputed for each
element that experiences concrete cracking or compression yielding.

2.7.6 Nonlinear solution strategy.

We assume we have a converged solution at load step i and we seek an incremental solution for load step i +1. Using the
values of EA*, y* and EI* from the previous load step, a trial solution is obtained for the first iteration using the previous
values and thereby providing new estimates of the strain distribution at each element cross-section. To compute the next
estimate for EA*, y* and EI*, numerical integration is used over the concrete core in order to cope with the nonlinear
chord modulus as illustrated in the figures below.
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Figure 2.7.6-1 Strain profile from step i to i+1 and 31-point Simpson integration
& Ag €1

Strain at step i Increment Strain at step i+1 Integration points
In concrete core

Concrete chord modulus. The effective chord modulus, E’, from the known stress-strain state (o, &) to the estimated
stress-strain state (oi+1, €i+1) is computed at each integration point using the concrete stress-strain curve. As discussed in

the following sections, the chord modulus is determined iteratively.

The Figure 2.7.6 -2 illustrates various chord moduli, E’, which connects a known starting point (i &;,) to the estimated
end point (oi+1, €+1). Here, &i+1 is obtained from the trial incremental solution, &i+1 = & +Ag, and o1 is the corresponding

stress determined from the stress-strain relationship as quantified in the Table 2.7.6-1.

Figure 2.7.6-2 Illustration of concrete chord moduli in zone transitions
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Table 2.7.6-1.  Concrete chord modulus and ratio for specified starting and ending zones.

CANDE-2022 Solution Methods and Formulations.

Starting Zone Ending Zone Corresponding Chord modulus Modulus ratio
& €i+1 Stress E' F'(y)=E" Ec
Gitl
elastic more elastic ci + EcAg E. =1.0
elastic yield fy + Ec(&i+1 - &) (oi+1- 61)/ Ae <1.0
elastic plastic f' (f' - 03)/ Ag <1.0
yield more yield ci + EcAg E. =EJ/ Ee
yield plastic f' (f' - 03)/ Ag <EJ/E.
plastic more plastic f' 0.0 =0.0
compress zone unloading ci + EcAg E. =1.0
elastic soften fi + Es(gir1 — &) (oi+1- 61)/ Ae <1.0
soften more soften ci + EsAe E <0.0
soften rupture 0.0 -oi/ Ag <0.0
rupture more rupture 0.0 0.0 =0.0

In the above table, the concrete-modulus ratio is defined as the chord modulus divided by the initial elastic modulus, F'(y)
= E'E.. Thus, F'(y) varies through the cross-section including negative values for integration points in the softening
range.

Elastic unloading occurs from any compression zone whenever |8i +1| < |8i | with the provision that neither strain is in

the softening or rupture zone.

Once a point in the cross section begins to crack, the initial tensile strength is permanently reduced to the corresponding
stress value on the softening leg of the stress-strain curve. Physically this means some tension damage has occurred
changing the shape of the stress-strain path in the tension zone. When the tensile strain exceeds the rupture strain, the
tension damage is complete and the stress-strain path is completely flat in tension for all future tensile loading conditions,
implying that cracks do not heal.

The above algorithm requires maintaining data records at each integration point to keep track of the cracking-depth
history and tension damage. It is also required to maintain data records of plastic straining in compression in order to
properly simulate unloading and reloading.

To summarize, all the above rules for the concrete chord modulus are implied in the following expression,

E'(y)=E F(y)

Chord modulus representation

wherein E. is constant and may be removed from integrals, and F'(y) may be evaluated at each integration point in
accordance with the above table.

Computing section properties. Section properties require area integrations over the concrete cross section. To this end,
the differential area is expressed as dA = b(y)dy where b(y) is the concrete cross-section width as defined below.

b(y) = 2Dy -y’

With the above understanding, the key section properties are a combination of the tube (integrated exactly) plus the
concrete core (integrated numerically) as expressed below.

Circle width as a function of y
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EA* = [Etn(Dth)t +E, j F'(y)b(y)dy }/s

y* = [Etn(D/2)(D+t)t +ECJ.F'(y)yb(y)dy} / EA*

(D/2+t)* - (D/2)" j
4

EI* = [Etn((y*-D/Z)z (D+)t + + E. (| F&)(-y*)’by)dy j/S

The integrals over the concrete core are achieved with 31-point Simpson integration to evaluate the following three sums
where F'(y;) is the concrete modulus ratio at integration point i, and b(y;) is the cross-section width of the concrete core.

Sum, =I F'(y)b(y)dy = D/90[F'(y,)b(y, ) +4F (y,)b(y, +2F (v, )by, )+...+F (y5,)b(ys, )]
Sum, =f F'(y)yb(y)dy = D/90[F(y, )y, b(y ) +4F (y,)y,b(y,)+2F (y,)y;b(y, ) +..+F (y5, )y, blys, )]

Sum,=[ F(y)y’b(y)dy = D/90[F'(y, )y, b(y, }F4F (v, )y, b(y, +2F (v, )y, b(y, .- F (¥, )y, 'b(y,,)]

Using the above integration results, the final results for the key section properties (effective axial stiffness, current neutral
axis, and effective moment of inertia) are expressed as,

EA* = (En(D+t)t +E Sum, )/S

y* = (En(D/2)(D+)t + E Sum, ) / EA*

4 4
El¥ = [Ee(y*zSum1 “2y*Sum, +Sumy) + Etn[(Y*-D/z)z D+t + 2“)4' 02) j ]/s

The above calculations are carried out in subroutine CONCIRCLE, which is called by subroutine CONTUBE. Iterations
within the load step continue until successive calculations for EA*, y* and EI* are within 1% relative error for all cross
sections.

2.7.7 Simple lllustrative Example

To complete the development, the CONTUBE pipe type is tested as a simply supported beam under 3™ point loading as
shown in the figure below. Eighteen beam-column elements are used to model the 18-foot beam with nodes 1 and 19
assigned to pinned supports and nodes 7 and 13 prescribed with equal increments of external loading in addition to the
beam’s self-weight.
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Figure 2.7.7-1 Illustrative example of simply supported beam
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Cross-section properties are the standard CONTUBE default values as identified in the CANDE-2022 user manual except
that the tube spacing distance is set to 1.0 so that only a single beam’s actual cross-sectional is modeled.

Recall that the concrete confinement by the tube is believed to increase the concrete tensile strength and tensile ductility.
Accordingly, the purpose of this study is to demonstrate the parametric influence of the concrete cracking strain value on
the load-deformation behavior of the beam model. Moreover, this procedure can be used to experimentally determine the
tensile strain parameters of the CONTUBE model.

The CANDE-2022 output report provides a complete assessment of the CONTUBE design criteria as well as stress-strain
diagnostics for concrete and tube at each node including combined shear evaluations. For purposes of this study, we
restrict our attention to the load-deformation plots in Figure 2.2.7-2.

The figure’s center curve (blue line) is the standard (default) value for cracking strain (0.0001 in/in), which is referred to
as STNMAT(1) in line B-2 of the CANDE input instructions. In this case the initial elastic response begins to soften at a
reaction load of about 2000 pounds as initial concrete cracking begins. The upper curve (red line) is the result of doubling
the cracking strain (0.0002 in/in), and the lower curve (green line) is the result of reducing the cracking strain by an order
of magnitude (0.00001 in/in).

Clearly, we see that the cracking strain has a pronounced influence on the load-deformation plots. By comparing
experimental data with plots similar to those above, the actual value of the concrete cracking strain may be determined
by numerical investigation. In the above plots the concrete rupture strain, which is referred to as STNMAT(4) in line B-
2 of the CANDE input instructions, is maintained at the default value of 10 times the cracking strain. If lower values of
the rupture strain are used, the softening curvature is more sharply acute, which may result in two equilibrium positions
for a given load. If this should occur, it is recommended to impose the loading by prescribed displacements rather than
by prescribed forces.
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Figure 2.2.7-2 Load-deformation curves for three values of cracking strain.
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As a final comment, it is believed that the CONTUBE model installed in CANDE-2022 is capable of correctly modeling
the behavior concrete-filled tubes; however, this needs to be demonstrated in controlled laboratory experiments and in
real-world applications.
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3 SOIL MODELS

Soil models, or constitutive forms, define a relationship between stress and strain based on phenomenological
observations of material behavior at the macroscopic level. The term soil model and constitutive form are used
interchangeably throughout this chapter. CANDE-2022 offers the following suite of soil models; isotropic elastic,
orthotropic elastic, overburden dependent, Duncan and Duncan/Selig, and extended Hardin. The common feature of these
models, which have proven effective in simulating the soil layers in culvert installations, is that the models are based on
elastic-like or variable modulus constitutive forms as opposed to plasticity based constitutive forms.

Each of the soil models is discussed in subsequent sections. However, in order to properly set the stage, we first discuss
the basic formulation of the continuum elements in which the soil models are contained.

3.1 Continuum Elements

Plane-strain continuum elements are used to represent the soil zones in the soil-structure system. Two continuum element
shapes are available in CANDE, triangular and quadrilateral. Both element shapes utilize identical interpolation functions
and are classified as non-conforming elements. These elements, developed by Herrmann in Reference 11, have superior
qualities in all basic deformation modes and outperform the well-known linear strain triangle and eight-node
isoperimetric quadrilateral, respectively. For example, one row of CANDE’s quadrilateral elements is capable of properly
replicating beam-bending behavior.

3.1.1 Triangle elements

The triangular element, shown below, employs area coordinates (the natural coordinate system for triangles) to define
interpolation functions for the x-displacement function u(x,y) based on 3-external nodal degrees of freedom at the triangle
vertices and 3-internal element degrees of freedom. Similarly, the y-displacement function v(x,y) is based on 3-external
and 3-internal degrees of freedom.

Figure 3.1.1-1. Characteristics of triangular continuum element

Node k
U, Vi

Triangle element characteristics:
« Complete quadratic interpolation function
Six external degrees of freedom at nodes

L ]
Internal dof: * Six internal degrees of freedom in element
By, G4 +« Captures linear strain distribution
B, Cz

Node i Bs, C3

Ui, Vi

Node j
u;,Vj

Linear interpolation functions are used for the external nodal degrees of freedom, which by themselves are equivalent to
a constant strain triangle. Superimposed on the linear displacement functions are complete quadratic interpolation
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functions associated with internal degrees of freedom within the element. Constraint equations are applied to the internal
degrees of freedom so that the element is convergent when the element size approaches zero and passes the patch test.
The internal degrees of freedom are statically condensed at the element level resulting in a 6x6 element stiffness matrix
and a 6x1 body-load vector associated with the external degrees of freedom, and ready for global assembly.

3.1.2 Quadrilateral elements

As shown in the figure below, the quadrilateral element is composed of two triangles wherein the x-displacement function
u(x,y) is based on 4-external nodal degrees of freedom at the vertices and 6-internal degrees of freedom within the
element. Similarly, the y-displacement function v(x,y) is based on 4-external and 6-internal degrees of freedom.

Figure 3.1.2-1. Characteristics of quadrilateral continuum element
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Quadrilateral element characteristics:
Composed of two triangular elements
Complete quadratic interpolation function
Eight external degrees of freedom at nodes
Twelve internal degrees of freedom in element
Captures linear strain distribution exactly

To ensure that the quadrilateral element is convergent and passes the patch test, the influence of the internal degrees of
freedom must approach zero as the element becomes vanishingly small. This requirement places three constraints on the
twelve internal degrees of freedom, resulting in nine internal degrees of freedom. The nine internal degrees of freedom
are statically condensed at the element level resulting in an 8x8 element stiffness matrix and an 8x1 body-load vector
associated with the external degrees of freedom, and ready for global assembly.

3.1.3 Finite element development

Interpolation functional forms. The interpolation functions used for triangle and quadrilateral elements may be
generically expressed using the notation presented in Chapter 1 as,
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Au, = NAu Equation 3.1-1

€

Av, = NAV, Equation 3.1-2

where, Au o AVe = displacement functions for x- and y-directions in triangle or quadrilateral element.

Aﬁe , AV . = column-vector of degrees-of-freedom for x and y displacement functions in element.

N = row-vector of interpolation functions in area coordinates, also expressible in x and y variables.

Of course, the length of the interpolation row-vector is larger for the quadrilateral element than for the triangle element,
as are also the lengths of the degree-of-freedom column-vector.

Strain-displacement relationship. Small strain and small deformation theory are used for all continuum elements.
Accordingly, the strain components for plane strain are given by the partial derivatives of the displacement functions as
expressed in the matrix relationship below,

Ag Nx 0
Ae, |=] 0 Ny ¢ Equation 3.1-3

where, ASX R Asy , Ay = strain increments for x-direction, y-direction and shear components, respectively.
N,x & N,y = partial derivatives of interpolation functions in the row vector with respect to x and y.
Stress-strain relationship. All soil models conform to a general constitutive form relating increments of stress to

increments of strain via a matrix of variable coefficients dependent on the stress-stain state at step i and step i+1 as
indicated below,

Ac, C, C, Cy)fAe,
Ao, | =1C, C, C,|l Ag, Equation 3.1-4
At G, G, C;lAy

where, Ao, Acy, AT = stress increments for x-direction, y-direction and shear components, respectively.

Cij: variable coefficients generally dependent on current stress and strain state.

Components of the constitutive matrix are symmetric (C; = Cj) and are explicitly defined for each soil model in
subsequent sections.

Element stiffness matrix. Using the above relationships, the element stiffness for the triangle or quadrilateral is obtained
by integrating the following matrix products,

Nx 0)(C, C, C,Y(Nx 0
k =I 0 Ny|l|C, C, C.|| 0 Nylda Equation 3.1-5
ANy Nx) (C,, C,, Ci; )\ Ny Nx

Integration of the interpolation functions is performed exactly using area coordinates whereas the components of the
constitutive matrix are taken as constant within the element based on the stress-strain state at the center of the element.
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After the internal degrees of freedom are statically condensated from the element, the element stiffness for the triangle
element is a 6x6 matrix associated with the 6-external degrees of freedom, two per node. The quadrilateral element
stiffness is an 8x8 matrix, associated with the §8-external degrees of freedom, two per node.

3.2 Isotropic Linear Elastic

The linear elastic soil model in isotropic form is the simplest soil model. Linear elastic implies the soil stiffness remains
constant irrespective of the stress state, and isotropic implies the soil stiffness is uniform in all spatial directions. The
model is useful for characterizing stiff in-situ soils and pre-consolidated soils such as the soil remaining after excavation.
Moreover, when the exact character of the soil is not well known, the linear-elastic isotropic soil model is useful for
parametric studies and/or to conservatively represent soil stiffness with modest moduli values. The isotropic form of the
elastic constitutive matrix is expressed by the following incremental stress-strain relationship,

Ao, C, C, 0 )Ag,
Ao, |=1C, C, 0 | Ae Equation 3.2-1
At 0 0 Cy,)lAy

where, Ci1, Ci2 and Cs3 are material constants defined by two elastic parameters. In the above matrix, the Cx, coefficient
is identified as Ci; to emphasize they are identical in value for the isotropic case.

In CANDE, the elastic parameters used to characterize Cy1, Ci2 and Cs3 are Young’s modulus and Poisson ratio as shown
in the second column of Table 3.2-1. The exact equivalent using other pairs of elastic parameters are shown in the third
column for the confined modulus and lateral coefficient, and in the fourth columns for the bulk modulus and shear
modulus.

Table 3.2-1 Components for constitutive matrix defined by elastic parameters

Elastic parameter equivalent pairs
Components of

Constitutive matrix

E = Young’s modulus
v = Poisson ratio

M; = confined modulus
Ko = lateral coefficient

B = bulk modulus
G = shear modulus

(Ea V) (MS, KO) (Bs G)
Ci = E(1-v) / (1+ v)(1-2 v) M, B+ (4/3)G
Cp = Ev/(1+v)(1-2v) M; Ko B - (23)G
Cy =(C11-Cn)2 = E/2(1+v) M; (1-Ko)/2 G

The inference in the above table is that if any two elastic pairs are known, they may be equivalently expressed with any
other elastic pairs using the above relationships.

Depending on the soil quality and compaction, representative ranges of Young’s modulus and Poisson ratio are shown
in Table 3.2-2 for three broad classes of soil.

Table 3.2-3 Representative ranges of Young’s modulus and Poisson ratio
Elastic parameters, nominal range
Soil type
Young’s modulus, E Poisson ratio, v
psi ()
Granular 600 to 2000 0.30 to 0.35
Mixed 400 to 1400 0.30 to 0.40
Cohesive 200 to 400 0.33 t0 0.40

Well-compacted soils are characterized by the high-range values of Young’s modulus, whereas poorly compacted soils
are characterized by the low-range values.
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3.3 Orthotropic Linear Elastic

Like the isotropic model above, the linear-elastic designation means the stiffness of the orthotropic model remains
constant irrespective of the stress state. However, unlike the uniform isotropic model, the stiffness of the orthotropic
model may be different in one direction, say x’, than it is an orthogonal direction say, y’. Some stratified sedimentary soil
deposits exhibit orthotropic properties, but this is rather rare in culvert installations. A more common occurrence of
orthotropic stiffness is due to man-made inclusions in soils such as reinforced earth and geo-textile fabrics.

The orthotropic form of the elastic constitutive matrix is expressed by the following incremental stress-strain relationship
wherein the x-y coordinate system is assumed to be aligned with the principal material axis.

Ao, C, C, 0}fAe,
Ao, |=1C, C,, 0 |l Ag, Equation 3.3-1
At 0 0 Ci)lAy

Ci1, C2, Ci2 and Cs; are four independent material constants, however their values are constrained by the requirement
the constitutive matrix must be positive definite. If the x-y coordinate system is not coincident with the principal material
directions, then the angle between the two coordinate systems is used to transform the constitutive matrix to the x-y
system.

3.31 Orthotropic properties from testing specimens

Direct measurements to characterize Cy1, Ca2, C12 and Cs; in naturally occurring orthotropic soils can be achieved with a
tri-axial testing machine by performing Ko-tests wherein the axial load is applied and the confining pressure is adjusted
so that there is no net lateral strain, also called a confined compression test, or uniaxial strain test. For the case when the
material x-axis is aligned with specimen’s vertical axis, the results of the Ko-test may be used to determine the following
three coefficients,

C,=o
C,=0)/8,
C33= (O i 0,) / 28

/e Equation 3.3-2

axial * “axial

Equation 3.3-3
Equation 3.3-4

axial

where, O = net axial stress including confining pressure,

axial

€ = net axial strain including confining strain,

axial
G, = confining pressure.

In a similar manner, the Ko-test may be repeated with the test specimen rotated 90 degrees such that the material y-axis
is aligned with the vertical direction in order to determine the last coefficient Cy; as,

C,=0,./¢c

axial * ~axial

Equation 3.3-5

This second set of test results may also be used to confirm the previously computed results for Ci» and Css.

3.3.2 Orthotropic properties for reinforced soil

Placing strips of metal or geo-textile fabrics into soil has proven to be very effective in improving the directional stiffness
of soils in embankments and pavement systems. Directional soil reinforcement has also been studied for use in long-span
culvert installations in Reference 18. As developed Reference 18 and outlined below, the orthotropic model is useful for
simulating the directional stiffness obtained from reinforced soil. This is based on the unit cell concept.

The upper portion of Figure 3.3.2-1 illustrates a unit cell of soil with a single reinforcing strip at the center of the cell
extending in the x-direction. The y-z face of the cell measures d inches by b inches with the inference that the
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reinforcement strips repeat themselves every d inches in the y-direction and every b inches in the z-direction to form a
uniform grid in some large zone of soil.

Figure 3.3.2-1  Unit cell concept for modeling reinforced earth
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Assuming the reinforcing strips act as one-dimensional elements and remain bonded to the soil, the composite stiffness
in the x-direction is determined by applying a uniform strain &x while holding all other strains in the soil cell to zero. As
illustrated in the bottom of Figure 3.3.2-1, the uniaxial straining produces stresses in the soil and the reinforcing strip as
expressed below.

O = M, Equation 3.3-6
O™ Ersgx Equation 3.3-7
where, O, O = stress in x-direction for soil and reinforcing strip, respectively.

M; = confined modulus of isotropic soil
E: = Young’s modulus of reinforcing strip

To determine the composite stress-strain modulus in the x direction, we evoke force equilibrium such that the net force
from the composite stress over the cell face is equal to force contributions from the soil and reinforcement,
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A 0,= A0t AO Equation 3.3-8

soil s 18

where, A
A

Ars = wt = reinforcing strip area per unit cell

cell = bd = area of unit cell face

soil = bd -wt = soil area per unit cell

Replacing G, O, in the above equilibrium equation with their strain equivalents, we have the key stress-strain

expression for the x-direction as,
o,= (M, +a(E -M,))e, Equation 3.3-9
where, o= wt/bd = ratio of reinforcement area to unit cell area.

To simplify and summarize, let the second term in the above expression be written as, R = a (Ers — Ms), which is the
contribution of reinforcing strip to the C;; component of the constitutive matrix for a unit cell area of soil. Thus,
the final form of the orthotropic constitutive matrix may be written as,

Ac, M,+R MK, 0 Ae,
AGy =| MK, M, 0 Asy Equation 3.3-10
At 0 0 G )| Ay

where, R = a(Ers — M;) = additional soil modulus stiffness in x-direction due to reinforcing strips
a = wt/bd = ratio of reinforcement area to area of unit cell
E: = Young’s modulus of reinforcing strips
M; = confined modulus of isotropic soil = E(1- v)/(1+ v)(1-2v)
Ko = lateral coefficient of isotropic soil = v/(1- v)
G = shear modulus of isotropic soil = E /2(1+ v)

To apply the above in the CANDE program, input C(1,1) = M; + R, C(1,2) = MKy, C(2,2) = M,, and C(3,3) =G.
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3.4 Overburden Dependent Soil Model

The overburden-dependent model is the application of the isotropic elastic model in a series of steps. Each step represents
an increment of soil fill or overburden pressure so that the elastic moduli are modified at each step to account for an
increased stiffness due to increased confining pressure.

Implicit in the model is the assumption that soil stiffness increases with overburden pressure. This assumption holds true
when the soil is in a state of confined compression (one-dimensional straining), wherein increased overburden pressure
further increases the lateral confining pressure and the soil tends to stiffen. On the other hand, if the soil is unconfined,
then increased overburden pressure will not stiffen the soil but, on the contrary, stiffness will be reduced due to shear
straining as observed in standard tri-axial tests.

The significant point is that overburden-dependent models are only valid insofar as the soil is predominantly in a state of
confined compression. Generally, gravity loading of the soil promotes states of confined compression; however, in
regions of strong interaction, such as certain areas in the vicinity of the pipe or around other inclusions, the assumption
of confined compression is questionable.

3.4.1 Input data for overburden dependent model

The overburden-dependent model is characterized using the stress-strain data obtained from a confined compression test
as illustrated in Figure 3.4.1-1. In this test, increasing levels of axial stress are applied to the top surface of the soil
specimen and the corresponding axial strains are measured for each stress level, all other normal strains are zero due to
the confining chamber.

Figure 3.4.1-1 Illustration of confined compression test data and secant confined moduli
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As illustrated in the figure, the secant confined modulus is defined as, M, = ©,/¢., and generally increases as

overburden pressure increases. The word secant is used to denote that Mj; is the slope of total stress to total strain, not an
incremental relationship. Experimental results from confined compression test are used to compute and list secant moduli
values as function of overburden pressure as depicted in the table below for n data points.
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Table 3.4.1-1  Data table of secant moduli versus overburden pressure.

Overburden Pressure Secant confined Modulus Secant Young’s modulus
(Vertical stress) Msi = oi/&i Es = Mg (1+v)(1-2 v)/(1-v)
Ol Msi Esi
02 My Ee
03 M3 Es
£ *
On M Esn

For most soils the lateral soil pressure exerted on the sides of the chamber typically increases in direct proportion to the
overburden pressure. Thus, the lateral coefficient Ko, which is the ratio of lateral pressure to vertical stress, remains
practically constant for all levels of vertical stress. Since Poisson ratio v = Ko/(1+ Kjy), a constant value of Poisson ratio
is used to provide the second elastic parameter for the overburden dependent model. Accordingly, as shown in the last
column of the above table, secant values for Young’s moduli are easily computed by multiplying secant confined moduli
by a constant factor § = (1+v)(1-2 v)/(1-v), which is derived from elasticity parameter equivalent relationships (see Table
3.2.1-1).

To briefly recap, Table 3.4.1-1 is representative of the data needed to exercise the overburden model in a typical soil-
structure problem. CANDE-2022 has “canned tables” of secant Young’s moduli corresponding to increasing values for

overburden pressure for typical soils that may be used in lieu of actual test data.

3.4.2 Overburden model development

To incorporate the overburden pressure data into the incremental stress-strain relationship, it is necessary to convert the
secant moduli data into chord moduli relating increments of vertical stress to increments of vertical strain in going from
load step i to step i +1as illustrated in the figure below.

Figure 3.4.2-1  Incremental stress-strain relationship and chord modulus

Vertical 4
stress

Tis4

a0

Vertical strain

Specifically for each plane-strain element in the soil system, the incremental constitutive matrix has the form,
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Ao, C, C, 0}fAeg
Ao, | = C, C, O Asy Equation 3.4-1
At 0 0 C; )l Ay

where Cii, Ci2, and Cy3 are chord moduli dependent on the stress state at load step i and step i+1.

Letting o; and &; represent the known vertical stress and strain at load step i in element #n, the increment of vertical stress
in element #n is estimated by determining the vertical pressure contributions of all elements above element #n that enter
the soil system in load step i+1. Tersely, this is stated as,

AG = increment of overburden pressure from added soil elements above element #n

The algorithm that computes the estimate for Ao utilizes the finite element mesh topology and element material property
data to determines which elements entering the system during load step i+1 are above element #n along with their
contributing pressures. The algorithm is laborious but straightforward.

Once the estimate for Ac is obtained, the chord moduli (see above figure) may be determined as,

Ac
C,= Equation 3.4-2
(0,tAc)/M,,, - ¢
C,=K,C, Equation 3.4-3
1
Cy,= E(I-KO )Cyy Equation 3.4-4

where, o, & = known stress and strain values in element #n at load step i.

M., = secant confined modulus interpolated from data table at pressure o;+ Ac.

Ko = v/(1- v) = constant lateral coefficient (v = Poisson ratio)

Herein lies the advantage of an overburden-dependent model over the nonlinear models to be described next. That is, to
advance the solution from step i to i+1, the overburden-dependent chord moduli are determined based on the soil layering
within the finite element mesh, not on a trial solution. Thus, there are no iterations within the load step and convergence
is not an issue with the overburden dependent soil model.

3.4.3 Overburden dependent secant moduli data tables in CANDE

For reference, reasonable ranges of Young’s secant moduli are provided in Table 3.4.3-1 along with suggested values for
Poisson ratio. The table offers three broad categories of soil; granular, mixed and cohesive for two compaction levels,
fair and good.

Table 3.4.3-1 — Secant Young’s modulus versus overburden pressure

Soil Class— Granular Mixed Cohesive
Compaction— Good Fair Good Fair Good Fair
MATNAM— GGOOD GFAIR MGOOD MFAIR CGOOD CFAIR
Overburden Young’s Young’s Young’s Young’s Young’s Young’s
Pressure Modulus Modulus Modulus Modulus Modulus Modulus
psi psi psi psi psi psi psi
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5 1,100 550 600 400 250 150
10 1,300 750 850 550 325 200
15 1,500 850 1,000 600 375 225
20 1,650 1,000 1,100 700 375 250
25 1,800 1,100 1,200 750 400 250
30 1,900 1,150 1,250 800 400 250
40 2,100 1,300 1,350 900 400 250
50 2,250 1,400 1,450 900 400 250

Poisson ratio

(pressure 0.30t0 0.35 0.30 to 0.40 0.33t00.40
independent)

The above values are a composite of seven different references as well as experimental data from the original CANDE
investigation (Reference 1). As a whole the data values are conservative (low side) and are suitable for design if actual
soil data is not available.

3.5 Duncan and Duncan/Selig Soil Models

The original Duncan and Duncan/Selig soil models are variable-modulus elasticity formulations using stress-dependent
equations for Young’s modulus and bulk modulus. The Duncan form and Duncan/Selig form are very similar, differing
slightly in the expression for the bulk modulus function. Both forms of the soil models are considered to be very
representative of actual soil behavior particularly for representing the stress-dependent behavior of backfill soil in culvert
installations. Basically, the models exhibit stiffening of constitutive moduli when confining stress increases and softening
when shear stress increases.

Duncan’s original work for the Young’s modulus formulation, which is based on a hyperbolic stress-strain relationship,
dates back to 1970 (Reference 19) and remains today as originally developed. In 1978 (Reference 20), Duncan and his
colleagues introduced a variable bulk modulus to serve as the second constitutive parameter, replacing the previous
assumption of a constant Poisson ratio. The bulk modulus function is based on a power law function of confining pressure.
Today, Duncan’s original Young’s modulus formulation together with the power-law bulk modulus function is referred
to as the Duncan soil model.

Selig proposed an alternative form of the bulk modulus function in 1988 (Reference 21). Selig’s bulk modulus function
is based on an observed hyperbolic relationship between volumetric strain and hydrostatic pressure from soil specimens
in hydrostatic compression. Thus, the so-called Duncan/Selig soil model is based on Duncan’s original Young’s modulus
formulation and Selig’s hyperbolic bulk modulus formulation. Selig also performed independent tests to characterize the
parameters of the Duncan/Selig model.

In 2015 Katona introduced a Modified form of Duncan and Duncan/Selig soil models to simulate plastic-like behavior
with permanent deformation upon unloading (Reference 29). That is, although the original model is excellent in tracking
the nonlinear behavior of soils in loading environments, it retraces the same stress-strain path upon unloading.
Consequently, the original model does not predict residual deformation, which is invariably observed in laboratory soil
specimens following a load-unload cycle. The new modified Duncan/Selig model produces permanent deformations
upon unloading similar to advanced plasticity models. No new material parameters are introduced into the modified
formulation; thus, the large existing data base of Duncan/Selig parameters remains valid for the modified formulation.

In the following sections, the original Duncan and Duncan/Selig models are presented first followed by the Katona
modification given in the last section. The CANDE-2022 computer program provides the option to “turn on” or “turn
off” the modified formulation at the user’s discretion.

3.5.1 Plane-strain constitutive matrix

From an overall perspective, the Duncan and the Duncan/Selig soil models are used to define the nonlinear components
of an isotropic, elasticity-based constitutive matrix for plane-strain conditions as expressed below.
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Ao, C n o 0 ) Ae,
Ao, | = C g 0 Asy Equation 3.5-1
At 0 0 C, )| Ay

where, Ao, AGy, AT = stress increments for x-direction, y-direction and shear components, respectively

Ae_, Asy, Ay = strain increments for x-direction, y-direction and shear components, respectively

C11a C12 , C33 = nonlinear coefficients dependent on Young’s modulus and bulk modulus functions.

The table below shows the relationship between the constitutive matrix components and the elastic functions.

Table 3.5.1-1 Components for constitutive matrix relationship to moduli functions
Components of E = Young’s modulus E = Young’s modulus
Constitutive matrix B = bulk modulus v = Poisson ratio
(E, B) (E, v)
Cn = 3B(3B +E) E(1-v)
9B - E (1+v)(12v)
Cp = 3B(3B-E) Ev
9B -E (1+v)(1-2v)
Cy = 3BE E
9B-E 2(1+v)

The middle column in the above table defines the matrix coefficients Cii, Ci2 and Ci3 in terms of Young’s modulus and
bulk modulus, which are the elastic parameter functions developed in the current Duncan and Duncan Selig models. The
third column defines the matrix coefficients in terms of Young’s modulus and Poisson ratio, which was the 1970 form
of the Duncan model. We will return to the implications of the constitutive matrix after the functional forms of Young’s
modulus and bulk modulus are presented.

3.5.2 Duncan Young’s modulus development

Duncan’s formulation is based on experimental observations of soil behavior from standard tri-axial tests. A standard tri-
axial test is conducted by placing a cylindrical soil specimen in a pressure chamber and initially subjecting the specimen
to a uniform hydrostatic pressure, called o3. Next a steadily increasing axial load is applied to the specimen producing a
net axial stress, called o1, which includes the hydrostatic pressure. Note that 63 and o, are principal stresses in the lateral
and axial directions, respectively. The difference in principal stresses 61 — o3 is called the deviator stress and is equal to
twice the maximum shear stress occurring on 45-degree plane.

As the axial stress increases, axial strain is computed by measuring the axial shortening of the specimen divided by the
specimen length. Note the measured axial strain does not include the initial hydrostatic strain.

The dashed curve in Figure 3.5.2-1 is a plot of deviator stress versus axial strain for a typical tri-axial test. Here, (o1 —

63) ris the measured maximum deviator stress at failure, and E; is the initial slope representing Young’s modulus at zero
deviator stress. As discussed subsequently, (o1 — 63) rand E; are dependent on the hydrostatic stress level.

Figure 3.5.2-1 Deviator stress versus axial strain for tri-axial test and hyperbolic approximation

3-12



Chapter 3 — Soil Models CANDE-2022 Solution Methods and Formulations. MGK
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Duncan hyperbolic function. Duncan’s fundamental insight is that the experimental curve is fairly well approximated
by equating the deviator stress to a hyperbolic function of axial strain as follows,

06,-0; = Equation 3.5-2

€

1y
E; (0,-03),

where, Ei = initial slope for Young’s modulus (dependent on minimum principal stress)

(o 1~ O3 )u = ultimate deviator stress from hyperbolic model (dependent on minimum principal stress)

€ = axial strain, not including initial hydrostatic strain

As illustrated in by the solid curve in the above figure, the hyperbolic function provides a good representation of the
actual test data up to the point of actual failure, (61 — 03)r . Thereafter the hyperbolic function tends to overshoot the
actual softening behavior as the hyperbolic function asymptotically approaches the limit, (61 — 03). . In order to preserve
the good curve-fit from zero to actual failure, it should be evident that (61 — 63), cannot, in general, be set equal to the
actual failure deviator stress, (o1 — 63)r . Rather, the Duncan model introduces a model parameter called the failure ratio
defined as,

_ (GI_GS)f <1.0

< Equation 3.5-3
(01 -G; )u

f

Given that (o1 — 63)r is characterized from actual experimental data, then Equation 3.5-3 may be used to define (61 — 03)u
for the hyperbolic function.

To complete the hyperbolic model, functional forms for (61 — 63)r and E; must be defined based on a sequence of tri-axial

tests. Figure 3.5-2 illustrates the typical behavior of a specific soil specimen subjected to a series of tri-axial tests with
increasing confining pressure.
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Figure 3.5.2-2  Typical behavior of a soil specimen in a sequence of tri-axial tests.
3

A (o1=03)n
o3 = 3 unit

Deviator
stress - AV I
(o4 — a3) .

Ty = 2 unit

(o1 =03)n
@y = 1 unit
/= Initial slopes: E;> E;> E;

Axial strain, £

Initial Young’s modulus. Based on a wide variety of soil tests as typified by the above figure, the initial modulus is
observed to increase with confining pressure according to the following power law,

E,=KP,(c,/P,)" Equation 3.5-4

where, Ei = initial Young’s modulus when deviator stress = 0
K = dimensionless magnitude of initial Young’s modulus
Pa = atmospheric pressure used to nondimensionalize parameters K and n
n = power-law coefficient usually less than 1.0

G, = confining pressure, minimum magnitude of principle stress

Mohr-Coulomb failure envelope. As portrayed in the Figure 3.5-2, the deviator stress at failure increases with confining
pressure. Based on the well-known Mohr-Coulomb failure theory, the (o1 — 03)r; data points define a failure envelope in
terms of normal stress and shear stress as depicted in the figure below.

Figure 3.5.2-3  Failure envelope in normal and shear stress space

A Shear stress, Failure
¥ envelope s
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 J
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Typically, the Mohr-Coulomb failure surface is a straight line defined by two constants, C and ¢, representing the
cohesion intercept and a constant soil friction angle, respectively. As illustrated in the above figure, a more general form
of the Mohr-Coulomb failure surface is used in this development wherein the soil friction angle is a decreasing function
of the confining pressure. Often, this is a better representation of actual soil behavior.

Based on the generalized Mohr-Coulomb theory, the tri-axial deviator stress at failure is characterized as follows,

2C cos¢ + 20, sing

(0,-0;3); = Equation 3.5-5

1- sing
where, @ =@, - A log,,(c,/P,) = variable soil friction angle Equation 3.5-6
C = cohesion intercept, units of stress

(@, = Reference soil friction angle at 03/P, = 1

A@ = reduction of soil friction angle for 10-fold increase in o3

Tangent Young’s modulus. Tangent Young’s modulus is equal to the derivative of axial stress to axial strain under the
conditions of tri-axial testing wherein the confining stress is constant. Since all the terms are now identified in Equation
3.5-2, we can compute tangent Young’s modulus by forming the derivative doi/de and replacing strain values with
equivalent stresses via Equation 3.5-2 to arrive at,

R, (1-si -
E= Ei[l - (- sing)(, ; o) ]2 Equation 3.5-7
2(Ccos¢ + 6,5ing)

where, El = tangent Young’s modulus dependent on stress state
G, = maximum compressive principal stress

0, = minimum compressive principal stress

Equation 3.5.7 is fundamental for both the Duncan soil model and the Duncan/Selig soil model.

3.5.3 Bulk modulus formulations

By definition, the tangent bulk modulus is the change in mean stress divided by the change in volumetric strain, which
is expressed as

do
B, = o Equation 3.5-8
d"gvol

where, Bt = tangent bulk modulus, usually stress dependent for soils.
6,,= (6,1 6,,% 0;;)/3 = mean average stress, also called hydrostatic stress
€= AdV/V =g, * €,,F €, = volumetric strain

Duncan bulk modulus function. Duncan used tri-axial test data including measurements of volumetric strain to obtain
experimental values for the tangent bulk modulus computed as,

AG in/AE Equation 3.5-9

measured

W | —
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For a given confining pressure, the change in axial stress and corresponding change in volumetric strain are measured
when the axial stress reaches 70% of the failure stress or the volumetric strain peaks in contraction, whichever occurs
first.

Based on a series of tri-axial tests with increasing confining pressure, Duncan proposed a power-law function (very
similar to the initial Young’s modulus function) to describe the tangent bulk modulus as,

B,=K,P,(c,/P,)" Equation 3.5-10

where, Kb = dimensionless magnitude of tangent bulk modulus

P&l = atmospheric pressure used to nondimensionalize parameters Ky, and m
m = power-law coefficient usually less than 1.0

O;= confining pressure or minimum magnitude of principle stress

Selig bulk modulus function. Selig developed an alternate form of the tangent bulk modulus function based on
hydrostatic tests. In the hydrostatic test the soil specimen is compressed under increasing confining pressure applied
equally in all directions and the change of volume is measured as function of confining pressure as depicted in the figure
below.

Figure 3.5.3-1 Hydrostatic test and Selig’s hyperbolic model
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Selig observed that the experimental curves relating mean stress to volumetric strain is reasonably described by a
hyperbolic equation in the form,

B.
6,=(———)& Equation 3.5-11
l-¢,.,/¢,

vol

where, B, = initial tangent bulk modulus when volumetric strain = 0.

€, = ultimate volumetric strain at large hydrostatic stress.

As illustrated in Figure 3.5.3-1, the tangent bulk modulus is determined by forming the derivative dom/dev and again
using Equation 3.5-11 to replace volumetric strain with hydrostatic stress to get the final result,
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B,=B[1+0¢,/(Bg, )]2 Equation 3.5-12

where, Bt = Selig form of tangent bulk modulus dependent on mean hydrostatic stress.

3.5.4 Summary of Original Duncan and Duncan/Selig soil models.

To summarize the tangent Young’s modulus function, Equation 3.5-7 is written in a more compact form as shown by
Equation 3.5-13.

o
E = Ei[l - —d]2 Equation 3.5-13
GdMaX
O3 \n ]
Where, E.= KPa(P—) Equation 3.5-14
2(Ccos¢p+ 0,sin
O iMax ~ ( 4 X 551ng) Equation 3.5-15
R, (1- sing)
¢ =9, - Ap log,,(c,/P,) Equation 3.5-16

Definitions of the symbols are listed below.
e E =tangent Young’s modulus dependent on complete stress state,

e E. =initial Young’s modulus dependent on minimum compressive stress,

®  OdMax = Maximum deviatoric stress at failure

e = angle of internal friction dependent on minimum compressive stress,
e 0, = maximum compressive principal stress,
e 0,= minimum compressive principal stress,

e P =atmospheric pressure, a constant for units of stress.

Material properties required for the above tangent Young’s modulus functions are,
¢ K =dimensionless magnitude of initial Young’s modulus,
e n=power-law coefficient for initial modulus usually less than 1.0,
e C = cohesion intercept for failure, units of stress,

® (0, = initial soil friction angle of failure surface,
e A= reduction of soil friction angle for 10-fold increase in o3,

. Rf = failure ratio of actual to model failure stress usually less than 1.0.

For the second elasticity function, the choice is between Duncan’s tangent bulk modulus power law or Selig’s tangent
bulk modulus derived from a hyperbolic relationship between hydrostatic pressure and volumetric strain.

Duncan’s tangent bulk modulus power-law function is given by,
B,=K,P,(c,/P,)" Equation 3.5-17a

Material properties required for Duncan’s tangent bulk modulus power law are,
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e K, =dimensionless magnitude of tangent bulk modulus,

e m = power-law coefficient usually less than 1.0.

Alternatively, Selig’s tangent bulk modulus function is written compactly as,

(&)
B, =B[1+ ——T Equation 3.5-17b
JmRef
p— 1 — . .
where, c, = 3 (0,% 6,+ 0,) =average principal stress.
and, O Ref — BiSu = reference stress (a constant)

Material properties required for Selig’s tangent bulk modulus function are,

Bi = initial tangent bulk modulus when hydrostatic stress is zero,

€, = ultimate volumetric strain at large hydrostatic stress.

See Section 3.58 for plastic-like unload/reload formulations.

3.5.5 Behavioral characteristics and special considerations

The behavioral characteristics and limitations of the Duncan and the Duncan/Selig soil model are nearly identical and
are enumerated below along with discussions on special treatments for limiting cases. Recall that maximum shear stress
is equal to half the difference in principal stresses, (o1 — 63)/2.

If confining pressure increases while shear stress is held constant, E; and B; become stiffer. However, if maximum shear
increases with constant confining pressure, E; becomes softer while B; remains constant.

Shear failure is said to occur when E; approaches zero as shear stress increases to the failure limit. To avoid numerical
problems, the bracketed term in Equation 3.5-13, which varies from 1.0 to 0.0 as shear stress increases, is limited to the
minimum value 0.05 so that E; = 0.0025E; is the minimum tangent Young’s modulus, which is effectively a near-zero
stiffness.

Tension failure is said to occur when the minimum compressive stress 63 becomes tensile wherein most soils breakdown
and lose all stiffness. This is simulated in the soil models by assigning a small limiting value to the minimum compressive
stress, o3/Pa = 0.1, so that E; and B, are near-zero stiffness values whenever the minimum principal stress approaches
tension.

Although E; and By are developed as two independent functions, energy considerations require constraints between the
functions (e.g., see Table 3.5-1). The soil models programmed in CANDE satisfy the energy constraints by enforcing,

E:;>0, and E/3 <B: < 8E..

Lower and upper limits on B; are equivalent to maintaining Poisson ratio in the range, 0 <v < 0.48. The programmed soil
models also have the option to use a constant Poisson ratio instead of the tangent bulk modulus functions.

It should be noted that the original Duncan and Duncan/Selig soil models are nonlinear elastic and behave the same in
loading or unloading. For the record, it is noted that some investigators have attempted to incorporate ad hoc unloading
algorithms into the Duncan soil model. Some of these algorithms, which are not based on plasticity concepts, violate the
continuity principal of load path.

Section 3.5.8 presents a thermodynamically admissible algorithm for unloading and reloading the Duncan and

Duncan/Selig soil models based on plasticity concepts that satisfy the continuity principle. This formulation, called the
Katona modification of Duncan/Selig soil models, is programmed into CANDE and be selected at the user’s discretion.
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3.5.6 Implementation of soil models and nonlinear solution strategy

Recall that Equation 3.5-1 is the fundamental plane-strain constitutive matrix relating stress increments to strain
increments from a known stress-strain state at load step i to the unknown stress-strain state at load step i +1. Accordingly,
the matrix coefficients, Cii, Ci2 and Ci3 are chord moduli as notionally illustrated on the stress-strain curve in the figure
below along with the tangent moduli at the beginning and end of the load step.

Figure 3.5.6-1 Chord and tangent moduli on a notional stress-strain curve.
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Chord moduli representation. To convert the Duncan and Selig tangent Young’s modulus and tangent Bulk modulus
to chord moduli suitable for defining C;i, Ci2 and Cy3, the following averaging technique is used,

ECZ (1- I‘)Et. + I‘Et.+1 Equation 3.5-18
B.=(1-1)B, + B, Equation 3.5-19
where E s B .= chord moduli for Young’s modulus and bulk modulus, respectively

Eti , Eti+1 = tangent Young’s moduli at load step i and i+1, respectively

Bti R Bti+1 = tangent bulk moduli at load step i and i+1, respectively

r = averaging ratio usually taken as 5.

The justification for averaging the tangent moduli to obtain the chord moduli follows from the mean-value-theorem of
differential calculus, which implies that the process becomes exact as the size of the load step decreases. Generally, the
averaging ratio is taken as r = 2. However as explained in the next paragraph, it is reasonable to set r =1when in situ soil
elements enter the structural system for the first time. For this reason, the averaging ratio is treated as a material input
parameter.

Entering soil elements. Soil elements enter the structural system in one of two categories. The first category applies to
pre-existing or in-situ soil elements in which an initial state of stress exists but is generally not known prior to the solution.
Elements entering in this category are typically part of the initial configuration and are assigned to the first construction
increment.

The second category applies to fill soil elements, i.c., soil layers added to the system in a predefined construction
schedule. Here, the initial stress state is non-existent prior to entry into the system. Both categories present special starting
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problems for the iteration scheme because the initial stress state is unknown in the first category or nonexistent in the
second category.

For the first category, the initial stress state can be determined iteratively by assuming the pre-existing soil zone is a
construction increment loaded with its own body weight (and, if desired, a consolidation pressure). In this case the
averaging ratio should be set to 1.0, so that, Ec and B. are equal to the tangent values at the end of the load step because
this corresponds to the existing stress state. When r = 1, the tangent moduli at the beginning of the load step have no
influence on the averaging process. After the first construction increment is complete, the algorithm automatically
changes r = 1/2 so that all subsequent moduli calculations represent chord values in going from a known stress state to
an unknown stress state.

For the second category, soil layers entering the system for the first time have zero initial stress and zero initial stiffness
at the beginning of the load step but gain stiffness at the end of the load step from self-weight and/or compaction load.
In this case, using r = 1/2 implies the effective chord moduli during the load step is equal to one-half the tangent moduli
at the end of the load step, which is considered to be a reasonable assumption. For all load steps following the initial load
step, there is no longer any ambiguity and we set r =1/2 because we know the stress state at the start of each subsequent
load step.

To start the iteration process for entering elements of either category, some initial guess must be made for the end-of-
load-step tangent moduli because the start-of-load step moduli are zero. Thus, in order to construct the first trial stiffness
matrix, "dummy" principal stresses are used to get the first trial moduli value. The dummy principal stresses have no
effect on the final converged solution, but they do influence the number of iterations required to achieve convergence.
After an element has entered the system, the initial guess for end-of-load-step tangent moduli for all subsequent load
steps are equated to the last calculated values and the use of dummy principal stresses is not required.

Nonlinear solution summary. Based on the forgoing discussion, a summary on the nonlinear solution strategy is
provided in the flowchart shown in Figure 3.5.6-2. The flow chart depicts the iteration cycle to determine the constitutive
matrix of a soil element wherein the principal stresses from the last iteration are used make closer and closer estimates
of the chord moduli until convergence occurs. Convergence of the algorithm occurs when the chord moduli obtained
from two successive iterations differ by no more than 1% for all elements.

Two additional features of the algorithm not shown in the flow chart are listed below.

An under-relaxation scheme to improve the rate of convergence for the tangent moduli comes into play after the second
iteration wherein each estimate of the end-of-load-step tangent moduli is a weighted average of the current estimate and
the previous iteration estimate. This feature takes advantage of the observation that convergence occurs in an oscillatory
manner.

A constant Poisson ratio option may be chosen by the user that replaces the tangent bulk modulus formulation. When the

constant Poisson ratio option is exercised, the bulk modulus formulations are bypassed. Otherwise, the algorithm is
essentially the same.
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Figure 3.5.6-2 Duncan and Duncan/Selig flow chart for computing constitutive matrix.
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3.5.7 Recommended Duncan and Duncan/Selig parameters for standard soils

Whenever possible, the Duncan and/or Duncan Selig soil model parameters should be determined directly from tri-axial
test equipment using established curve-fitting procedures. In many instances, however, tri-axial data may be unavailable,
and so, it is convenient to establish standard parameter values for various types of soil and degrees of compaction.

Table 3.5.7-1 provides parameter values for the Duncan soil model for four soil classifications, each with three levels of
compaction. These standard values, extracted from References 19 and 20, are conservative in the sense that they are the
lower bounds of strength and moduli values observed from numerous tri-axial tests for each soil type. An independent
study at the University of Notre Dame utilizing the same database verified that the table parameters give a good but
conservative representation of the experimental data.

Table 3.5.7-1  Duncan soil model parameters (from Duncan Reference

Soil type and Young’s Tangent Modulus Parameters Bulk Parameters Density
compaction K n C ©o JaY0) Re Ky m reference
() () (ps) | (deg) | (deg) () () () (Ib/fE)
CA105 600 0.40 0.0 42 9 0.7 175 0.2 150
CA95 300 0.40 0.0 36 5 0.7 75 0.2 140
CA90 200 0.40 0.0 33 3 0.7 50 0.2 135
SM100 600 0.25 0.0 36 8 0.7 450 0.0 135
SM90 300 0.25 0.0 32 4 0.7 250 0.0 125
SM85 150 0.25 0.0 30 2 0.7 150 0.0 120
SC100 400 0.60 0.5 33 0 0.7 200 0.5 135
SC90 150 0.60 0.3 33 0 0.7 75 0.5 125
SC85 100 0.60 0.2 33 0 0.7 50 0.5 120
CL100 150 0.45 0.4 30 0 0.7 140 0.2 135
CL90 90 0.45 0.2 30 0 0.7 80 0.2 125
CL385 60 0.45 0.1 30 0 0.7 50 0.2 120

In the above table the soil type is defined as follows: CA = Coarse Aggregates, SM = Silty Sand, SC = Silty-Clayey Sand
and CL = Silty Clay. The compaction number is percent relative compaction, per AASHTO T-99. As an example, SM100
means silty sand compacted to 100% relative density per T-99.

In a similar manner Table 3.5.7-2 provides parameter values for the Duncan/Selig soil model for three soil classifications,
each with five levels of compaction. These values were computed by Selig in Reference 21 and are generally
conservative. The bulk modulus parameters were determined from hydrostatic tests which, according to Selig, tend to be
more conservative than those determined from standard tri-axial tests.
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Table 3.5.7-2  Duncan/Selig soil model parameters (from Selig Reference)

Soil type and Young’s Tangent Modulus Parameters Bulk Parameters Density
compaction K n C ©o JaY0) Re B/ P, €u reference
() ) (psi) | (deg) | (deg) () () () (Ib/ft%)
SW100 1300 0.90 0.0 54 15 0.65 108.8 0.01 148
SW95 950 0.60 0.0 48 8.0 0.70 74.8 0.02 145
SW90 640 0.43 0.0 42 4.0 0.75 40.8 0.05 140
SW85 450 0.35 0.0 38 2.0 0.80 12.7 0.08 130
SW80 320 0.35 0.0 36 1.0 0.90 6.1 0.11 120
ML95 440 0.40 4.0 34 0.0 0.95 48.3 0.06 135
ML90 200 0.26 3.5 32 0.0 0.89 18.4 0.10 130
MLSS5 110 0.25 3.0 30 0.0 0.85 9.5 0.14 122
MLS80 75 0.25 2.5 28 0.0 0.80 5.1 0.19 115
ML50 16 0.95 0.0 23 0.0 0.55 1.3 0.43 66
CL95 120 0.45 9.0 15 4.0 1.00 21.2 0.13 130
CL90 75 0.54 7.0 17 7.0 0.94 10.2 0.17 125
CL85 50 0.60 6.0 18 8.0 0.90 5.2 0.21 120
CL80 35 0.66 5.0 19 8.5 0.87 3.5 0.25 112

In the above table the soil type is defined as follows: SW = Gravelly sand, ML = Sandy silt, and CL = Silty Clay. The
compaction number is percent relative compaction, per AASHTO T-99. As an example, SW95 means gravelly sand
compacted to 95% relative density per T-99.

In the old CANDE-1989 documentation, Selig presented less conservative values for the tangent bulk modulus
parameters by uniformly increasing the parameter Bi/P, by a factor of 2.5 and uniformly decreasing &, by the factor 0.71.
However, in recent years most researchers prefer the original hydrostatic data given in the above table.

3.5.8 Modified Duncan/Selig models for plastic deformation (Katona)

The Original Duncan and Duncan/Selig formulation is a nonlinear elastic model that travels the same stress-strain path
in loading and unloading. Although the original model does an excellent job in capturing the nonlinear loading behavior,
actual soil samples exhibit linear-like unloading and reloading similar to some plasticity-based constitutive models. In
particular, the so-called PLAXIS soil hardening model employs a plasticity-based hardening rule that was developed to
mimic the Duncan/Selig variable-modulus model under loading conditions along with elastic unloading and reloading
behavior (Reference 30). One short coming of the PLAXIS model is that it requires new model material parameters that
are not defined in the existing Duncan/Selig data base for typical soils and levels of compaction.

Clearly it is a desirable objective to modify the Duncan/Selig soil model to simulate the observed plastic-like behavior
of soils in unloading and reloading conditions without introducing additional model parameters and retaining the variable
modulus formulation. Specifically, the objective is to modify the model to unload and reload with appropriate linear
elastic stiffness and to establish the criteria to define loading stress space versus unload/reload stress space. Underlying
this objective is the requirement to prove that the modified model meets all thermodynamic restrictions for constitutive
theories.

To achieve the objective, concepts from advanced plasticity theory are introduced into the original Duncan/Selig
formulation such as stress-dependent history variables. However, the modified Duncan/Selig model remains a variable
modulus formulation without explicitly dividing the strain into elastic and plastic components. The proposed formulation
must satisfy thermodynamic restrictions, which under the assumptions of time and temperature independence, are
reduced to the following two requirements:

Positive work. Work must be positive during any load increment without creation of energy during any load cycle. In

this study it is shown that the modified Duncan/Selig formulation satisfies Drucker’s postulate, which is a sufficient
condition to satisfy this thermodynamic requirement.
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Stress-strain continuity. Infinitesimal changes in the orientation of an incremental stress vector must result in small
changes in the incremental strain vector; i.e., no discontinuous jumps in strain magnitude. In this study a plasticity-like
normality factor is introduced into the variable Young’s modulus function in order to satisfy the continuity requirement.

Young’s Modulus Loading/Unloading Modification. To satisfy the stress-strain continuity requirement, Equation 3.5-13
is modified by inserting a continuity factor called B, where 0 < < 1, as defined below.

()
E = Ei[l - 4 ]2 Equation 3.5-20
dMax

Ao,
JAc +Ac

The continuity factor is similar to the consistency condition in plasticity theory that asserts the growth of the yield surface
is proportional to the applied stress vector acting in the direction normal to yield surface (dot product). To illustrate how
the continuity factor accounts for loading and unloading consider the two stress paths shown in the figure below.

B = Maximum ( 0) Equation 3.5-21

Figure 3.5.8-1. Illustration of load/unload stress paths for tri-axial and arbitrary conditions.
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First consider the standard tri-axial stress path shown on the left side of the above figure wherein deviatoric load
increments Acg are shown with vertical black arrows (since Aoz = 0). For each of these loading steps, Equation 3.5-21
gives = Acd/ | Aog | = 1. Therefore, the tangent Young’s modulus represents a pure loading condition exactly according
to the original formulation, Equation 3.5-13, wherein the stiffness is decreasing. However, the fourth load increment
shown with the red arrow is unloading (negative increment) so that we find, - Acd/ | Aoy | = -1, which means p = 0.
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Therefore, the tangent Young’s modulus becomes E; = E; satisfying the objective to unload elastically with the initial
stiffness function.

It is important to realize that the reversal of stress at step 4 constitutes a “large” change in orientation because the direction
of the stress vector is turned 180 degrees. Consequently, the abrupt change in stiffness from loading (E; << Ei) to
unloading (E= E;) does not violate the continuity principle because the stress reversal is a “large” change in loading
direction.

To demonstrate the continuity principle is satisfied for small changes in stress, consider the arbitrary stress path shown
on the right side of Figure 3.5.5-1. Here each of the four load steps is associated with an arbitrary incremental stress
vector with components A3, Acg that define an angle 0 as illustrated in the last load step shown in red. Since = cos 0
when 0 is between -90 degrees and + 90 degrees, it is evident that a “small” change in 0 from load step to load step will
produce a small change in B and, hence a small change in the stiffness function; thereby satisfying the continuity
requirement.

Based on the above concepts, loading and unloading definitions are summarized in the table below where it is observed
the stiffness increases smoothly from the maximum loading angle 8 = 0 degrees to the neutral loading angles 8 = + 90
degrees.

Table 3.5.8-1. Loading definitions dependent on angle of stress-components 0

) Ac B E
Loading Definitions 0 =cos™ d 7 Normality factor Tangent Young’s Modulus
( Ao+ Ac532)
. . o _ E=E.[1 O4 12
Maximum loading 6=0 B=1 i[ - —]
dMax
(0
Intermediate loading -90°< 9 <90° 0<P=cosb<1 E= Ei [1 - ,3 d ]2
GdMax
Neutral loading 0 =+90° B=0 E=E;
Unloading |o] > 90° B=0 E=E;

Unload/Reload Range. Next, we need to establish the stress range wherein the initial elastic modulus E; function is used
for further unloading or reloading steps. This problem is solved by borrowing another plasticity concept called “isotropic
hardening” that defines a load-history variable that tracks the largest growth of the yield surface over all past loading
steps to present. In accordance with the original Duncan formulation, the yield function is the deviatoric stress. Therefore,
we define the load-history variable z ) to track the largest deviatoric stress obtained over load steps 1, 2, n, where n is
the current load step number. Starting with z ) = 0, the load-history variable is updated at the end of each converged
load step as shown below.

2= Max (2, G4 Equation 3.5-22

Note that zny) increases if and only if load-step n results in a deviatoric stress greater than the previous high value;
otherwise, z(;) does not change in value. Thus zn,) defines the current boundary separating the linear unload/reload domain
from the nonlinear loading domain. During the iterative solution process for load step n+1, the trial solution Ggm+1) is
compared with zny) to determine the appropriate equation for tangent Young’s modulus for the next iteration as shown
below.
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o : .

If0y,) > 2y then E = E[1-p G—d]2 (loading domain) Equation 3.5-23a
dMax

Ifo,,., < 7, thenE, = E; (unload/reload domain, 5 = 0) Equation 3.5-23b

When operating in the unload/reload elastic domain, the initial modulus function E; (Equation 3.5-4) is evaluated with
the minimum stress value o3* that is associated with the stress state of zw). In other words, o3* is a second load-history
variable that is saved along with z). Thus, E; is constant value for a specific unload/reload cycle.

Effective Young’s Modulus. By definition E, and E,+ are the tangent modulus values at the end of load steps n and n+1,
respectively. The effective modulus value Ecsreciive assigned to the incremental stress-strain matrix (Equation 3.5-1) is an
appropriate weighted average of these two values depending on loading/unloading conditions as shown in the equation
below with the weighted averaging ratio rg defined in Table 3.5.8-2.

E

effective

=(l-) E,) + Eq., Equation 3.5-24

Table 3.5.8-2 Weighted averaging ratio (0 < re< 1) as defined below.

Loading Conditions rg value Criteria for condition

(1) Pure loading 1/2 Zy= O4n) and Cymit)~ Ouqm > 0
(2) Pure unloading 172 Z > Gy and Gyt~ Oam <0
(3) Load-to-unload transition 1 Z = Oy and gt~ Oam < 0

4) Rel -to-1 transiti -
(4) Reload-to-load transition Syt~ Z) Z4y > Oy and Oyt > Za

Iy =

Gim+1)~ Cdem

The above table applies to all iterations while solving for incremental stresses from load-step n to n+1 until convergence
is achieved. For loading conditions 1 and 2, the averaging ratio is 2, which places equal weight on the beginning and
ending tangent moduli in conformance with the mean value theorem of calculus for smooth functions. Case 3 places the
total weight on the ending modulus (elastic) in order to simulate the abrupt change in stiffness upon load reversal. Finally,
case 4 assigns rg equal to the proportion of the stress increment that exceeds the linear range; conversely, (1-rg) is the
proportion within the linear range. These weights generate an accurate stress-strain response for all load/unload/reload
conditions.

Bulk Modulus Loading/Unloading Modification. The bulk modulus function, either the power law form (Equation 3.5-
17a) or the hyperbolic form (Equation3.5-17b) monotonically increases in value during hydrostatic loading conditions.
That is, the bulk modulus becomes steadily stiffer as the hydrostatic stress increases, which is in accordance with
experimental observations. Upon unloading, however, experimental evidence indicates that the response is linear with a
constant bulk modulus approximately equal to the current tangent bulk modulus of the loading curve. Thus, the proposed
modification to the original bulk modulus function is to unload and reload with a constant bulk modulus equal to the
tangent of the loading curve.

Based on the above, the proposed bulk modulus formulation inherently satisfies the continuity principle because the
loading, unloading and reloading bulk modulus values are identical at the common point of departure/return on the
loading curve. Therefore, the bulk modulus loading function, Equation 3.5-17a or b, does not need to be modified as was
required for the Young’s modulus function with the insertion of a continuity factor.

Bulk Modulus Unload/Reload Range. Similar to the Young’s modulus formulation, we need to establish and track the
current stress range wherein the linear bulk modulus remains valid for subsequent unloading or reloading steps. Here
again we use the plasticity concept of a load history variable qm) representing the largest historical value of average stress
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Om Or minimum stress 03, depending on whether the Selig or Duncan bulk modulus function is selected. The following
equations are for the Selig bulk modulus function with the understanding that the Duncan form is very similar. Starting
with q) = 0, the load-history variable is updated at the end of each converged load-step n as shown below.

A = Max(q(n—l)’ Gm(n)) Equation 3.5-25

The variable qq) increases if and only if load-step n results in a positive loading increment of average stress; otherwise,
qm) does not change in value. Thus q) defines the current average-stress level separating the unload/reload domain from
the loading domain. Hence during the iterative solution process for load step n+1, the trial solution Gmn+1) is compared
to qm) to determine the appropriate equation for the bulk modulus on the next iteration as shown below.

If6, ) > du» then B, ,=B;[ 1+ . m_1*  (loading domain ) Equation 3.5-26a
mRef
If Oy = Gy then B, = B[ I+ o I* (unload/reload domain) Equation 3.5-26b
mRef

Note Equation 3.5-26b provides a constant tangent bulk modulus in the unload/reload domain because q(n) remains a
fixed value until oy, re-enters the loading domain.

Effective Bulk Modulus. Since B, and By are the tangent bulk modulus values at the end of load steps n and n+1,
respectively, the effective modulus value Befreciive assigned to the incremental stress-strain matrix (Equation 3.5-1) is
taken as the average value. This is expressed in the equation below that is in conformance with the mean value theorem
of calculus for smooth functions.

1 .
Beffective = E (B(n) + B(n+l)) Equatlon 3.5-27

Modification Summary. This completes the development of the Modified Duncan and Duncan/Selig model to simulate
realistic unloading and reloading of soils. It has been shown that the Modified model satisfies the stress-strain continuity
requirement by introducing the continuity factor B in the Young’s modulus function. Continuity is automatically satisfied
for the bulk modulus function by using the tangent modulus at the point of departure as a constant bulk modulus in the
unload/reload region.

Finally, the thermodynamic requirement of positive work (no energy creation) is ensured by the fact that the unloading
modulus is always greater or equal to the loading modulus for both Young’s modulus and bulk modulus functions over
any load cycle. Expressed formerly, we require that for any load/unload cycle:

Cﬁgng >0 Equation 3.5-28

Intuitively it can be seen that the area under the nonlinear stress-strain curve during loading is greater than the negative
area under the steeper linear curve during unloading. Therefore, Equation 3.5-28 is satisfied thereby satisfying the
thermodynamic on positive work.

Finally, it is important to note that no new material parameters have been introduced into the formulation so that the
existing Duncan/Selig parameter data base presented in Section 3.5.7 remains valid for the modified formulation.
Subroutines in the CANDE computer program relating to the Duncan/Selig model have been rewritten to incorporate the
history variables and logic for the new formulation. Users are given the option to select the Original or the Modified
Duncan/Selig with one simple input command (NEWDSK).

3.5.9 Performance of Modified Duncan/Selig model

As the result of a previous study (Reference 28), the Duncan/Selig model parameters have been identified to best replicate
the experimental loading curves of Cooks Bayou sand that included three standard triaxial tests with confining pressures
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of 25, 50 and 100 psi and one hydrostatic test. The experimental tests also included unload-reload cycles, which of
course, could not be replicated by the Original Duncan/Selig soil model. Clearly, the Cooks Bayou experimental
data verifies the veracity of the Modified Duncan/Selig model.

Triaxial test performance. Figure 3.5.9-1 compares the Modified Duncan/Selig model with tri-axial test data for Cooks
Bayou sand at 25 psi confining pressure. The predicted loading curve, which is identical for the Original and Modified
forms of the Duncan/Selig model, matches the experimental plot starting with the initial tangent slope and tracking to
the maximum capacity.

Midway along the loading curve, the Cooks Bayou test specimen is subjected to an unload/reload cycle that produces a
narrow hysteresis loop as shown in the figure. The Modified model simulates the unload/reload cycle with a linear elastic
response that is a close approximation to the hysteresis loop. It is re-emphasized that the Modified model only employs
the model parameters determined from loading tests so that the predicted unload/reload line is just the initial modulus
function evaluated at 25 psi.

Figure 3.5.9-1. Modified Duncan/Selig model and experimental data in tri-axial test.
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Hydrostatic test performance. In a similar manner, Figure3.5.9-2 compares the Modified Duncan/Selig model with
hydrostatic test data for Cooks Bayou sand. The predicted loading curve, which is identical for the Original and Modified
forms of the Duncan/Selig model, tracks well with the experimental loading plot starting with the initial tangent slope
and along the steadily increasing curve as the bulk modulus increases its stiffness.

Starting at hydrostatic pressure of 145 psi on the loading curve, the Cooks Bayou test specimen is subjected to an

unload/reload cycle producing the near linear-like response shown in the figure below. The Modified model simulates
the unload/reload cycle with a linear elastic response that closely approximates the experiment data. Again, it is re-
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emphasized that the Modified model only employs the model parameters determined from loading tests wherein the
predicted unload/reload linear slope is equal to the slope of the loading curve at the point of departure/return.

Figure 3.5.9-2. Modified Duncan/Selig model and experimental data in hydrostatic test.
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Additional examples on the performance of Katona’s modified Duncan/Selig soil model are provided in Reference 29
wherein it is shown that the Modified model provides a realistic approach to simulate compaction loading on soil layers
without using the artificial squeeze layer technique.
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3.6 Extended Hardin Soil Model

The extended Hardin soil model is a variable-modulus elasticity formulation using stress/strain-dependent functions for
the shear modulus and Poisson ratio. Basically, the model exhibits stiffening of constitutive moduli when confining stress
increases and softening when shear strain increases.

Hardin’s original work for the variable shear modulus formulation, which is based on a hyperbolic relationship between
shear stress and shear strain, is summarized in a 1973 Air Force technical report (Reference 22). In 1974 a variable
Poisson ratio function was developed to be the companion elasticity function so that together the two elasticity functions,
shear modulus and Poisson ratio, are referred to as the extended Hardin soil model. Reference 1 documents the
development of the variable Poisson function as well as validation of the shear modulus function against an independent
set of experimental data.

In many ways the extended Hardin model is similar in behavior to the Duncan and Duncan/Selig models, although the
later models are more popular and are supported by a larger database of soil parameters dependent on soil quality and
compaction. However, a unique feature of the extended Hardin model is that the soil parameters for the shear modulus
function are characterized in terms fundamental soil properties including void ratio, plasticity index and percent
saturation of the soil.

From an overall perspective, the extended Hardin soil model functions are used to define the nonlinear components of
an isotropic, elasticity-based constitutive matrix for plane-strain conditions as expressed below.

Ac, C, C, 0 )fAeg,
Ae, |=1C,, C, O Asy Equation 3.6-1
At 0 0 Cy,)lAy

where, AGX R Acy, AT = stress increments for x-direction, y-direction and shear components, respectively
Aax R Aay , Ay = strain increments for x-direction, y-direction and shear components, respectively

C,;, C,,, C;; = nonlinear coefficients dependent on shear modulus and Poisson ratio functions.

The table below shows the relationship between the constitutive matrix components and the shear modulus and Poisson
ratio functions that define the extended Hardin model.

Table 3.6.1-1 Components for constitutive matrix relationship to moduli functions

Components of G = shear modulus G = shear modulus
Constitutive matrix v = Poisson ratio B = bulk modulus
(G, v) (G, B)
Cn = 2G(1-v 4
2604-v) B+ 2G
1-2v 3
Cn = 2Gv 2
B--G
1-2v 3
Cy = G G

The middle column in the above table defines the matrix coefficients Cii, Ci2 and C;3 in terms of shear modulus and
Poisson ratio, which are the elastic parameter functions directly developed for the extended Hardin soil model. The third
column defines the matrix coefficients in terms of shear modulus and bulk modulus, which is a more natural pair of
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elasticity functions and often easier to implement. The equivalence between column 2 and 3 is given by the elasticity
relationship,

+
Bog20+v

Equation 3.6-2
3(1-2v)

The motivation for choosing Poisson ratio as second elasticity function is because it easy to develop a smooth function

that ensures Poisson ratio remains within the admissible bounds, 0 <v < %. In contrast, the constraints on an independent

bulk modulus function requires that B > 2/3 G, which is more difficult to achieve with a smooth function.

3.6.1 Hardin shear modulus development

Hardin’s formulation is based on experimental observations of soil behavior from standard tri-axial tests. A standard tri-
axial test is conducted by placing a cylindrical soil specimen in a pressure chamber and initially subjecting the specimen
to a uniform hydrostatic pressure, called o3. Next a steadily increasing axial load is applied to the specimen producing a
net axial stress, called o1, which includes the hydrostatic pressure. Note that 63 and o are principal stresses in the lateral
and axial directions, respectively. The difference in principal stresses 61 — o3 is equal to twice the maximum shear stress
occurring on 45-degree plane.

As the axial stress increases, axial strain €; is computed by measuring the axial shortening of the specimen divided by
the specimen length. Similarly, the lateral strain €3 is measured at each load step so that the maximum shear stain is equal
to €1 - €3. Note that &; and &3 do not include the initial hydrostatic strain and the algebraic signs must be strictly observed
in computing differences. The above concepts are summarized below.

1 .
T= E(Gl- ;) Equation 3.6-3
Y=¢g-¢g, Equation 3.6-4
T= GS’Y (implied nonlinear relationship) Equation 3.6-5

where, T=accumulated shear stress from tri-axial test
Y = accumulated shear strain from tri-axial test

GS = secant shear modulus, a function of stress and strain

The curve in Figure 3.6.2-1 is an idealized plot of shear stress versus shear strain for a typical tri-axial test. Here, Gmax is
the initial slope at zero shear strain and Tmax is the maximum shear strain at failure. As discussed subsequently, Gmax and
Tmax are dependent on the hydrostatic stress level.
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Figure 3.6.2-1 Idealized shear stress-strain curve for tri-axial test
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Hardin hyperbolic function. Hardin’s fundamental insight is that for any tri-axial test, the shear stress-strain curve is
fairly well approximated by equating the shear stress to a hyperbolic function of shear strain as follows,

Equation 3.6-6

— Gmax
’ I+, !
v.= L1+ o Equation 3.6-7
e exp( )
Ve
V.= G, /C Equation 3.6-8

where, Gmax = initial slope for shear modulus (dependent on hydrostatic stress)

Y, = hyperbolic strain function

Y, = reference shear stain

0. = dimensionless soil parameter, related to soil type and percent saturation.

Cl = soil parameter with units of stress, related to void ratio, percent saturation, and plasticity index.

As shear strain increases to infinity, the shear stress in Equation 3.6-6 approaches an asymptotic limit representing the

maximum shear stress (or shear failure stress) given by,
Equation 3.6-9

T B Gmaer

max
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Initial shear modulus. Based on a wide variety of soil tests as typified by the above figure, Hardin discovered that the
initial shear modulus increased in proportion with the square root of the initial tri-axial confining pressure as expressed
below.

Go= S0, Equation 3.6-10

where, Gmax = initial shear modulus when shear strain =0

S1 = soil parameter related to void ratio (units in 4/ Psi )

6, = 1/3(6,,+ 6,,* G,;) = hydrostatic stress (psi)

Equations 3.6-6 through 3.6-10 form the complete mathematical description of the Hardin secant shear modulus function,
which is characterized by three soil model parameters, Ci, S; and a. The direct method of determining the soil model
parameters is to conduct a series of tri-axial tests on the particular soil being investigated. Alternatively, Hardin has
developed an indirect method for determining soil parameters based on fundamental soil properties. Both the direct and
indirect methods are presented below.

Direct method of soil parameter identification. Clearly the most accurate way to determine the shear modulus
parameters, Ci, Si and a, is to perform a series of tri-axial tests on the soil under investigation. For each confining
pressure o3, it is required to plot an experimental stress-strain curve similar to Figure 3.6.2-1 and then follow the steps
below.

1. Construct the initial tangent at zero shear stain and denote its value as Gmax. Based in Equation 3.6-10, the
parameter S; may be computed as follows.

S1= G /03 Equation 3.6-11

Ideally each confining pressure would produce the same value for S;. However, since the model is not perfect,
the final value for S; should be the average value determined from all initial confining pressures.

2. Using the measured value of Guax from step 1 along with the experimentally observed max shear stress Tmax,
the parameter C; may be computed by combining Equations 3.6-8 and 3.6-9 as follows.

C,= G Mo Equation 3.6-12

In an ideal world, the computed value of C1 should be the same for all confining pressures. However, since the
model is not perfect, the final value for C; should be the average value determined from all initial confining
pressures.

3. The third and last soil parameter a controls the shape (concavity) of the shear stress-strain curve in Figure
3.6.2-1. Since all parameters of the secant shear modulus model are known except o, Equation 3.6-6 may be
applied at a single experimental data point (t*, y*) to provide an algebraic equation to solve for a. A natural
data point to select is midway in the stress range, ™ = 5 Tmax along with the corresponding experimentally
measured shear strain y*.

Indirect method of soil parameter identification. A particularly useful result of Hardin’s work is that he developed
an indirect method for determining soil parameters based on fundamental soil properties. This was accomplished by
correlating the results of many tri-axial tests for many types soil with basic soil properties including void ratio, percent
saturation, and plasticity index.
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Listed below are the expressions he developed to quantify the soil parameters Ci, S; and a for three broad classes of soil,
granular, mixed and cohesive.

F’R?
- (units psi) Equation 3.6-13
' 0.6-025PD"
S, =1230 F (units ~/psi ) Equation 3.6-14
3.2 for granular soil
o= | 2.54(1+0.02S) for mixed soil (dimensionless) Equation 3.6-15

1.12(1+0.02S) for cohesive soil

2.973 - e)?

F= —( ©) for all soil types

where, l+e
| 1100 for granular soil
1100 - 6.0 S for mixed and cohesive soil

and, €=voidratio(0<e<1)

S = percent saturation (0 < S < 100)

PI = plasticity index (0 <PI<1)

Thus, knowing the type of soil, void ratio, percent saturation, and plasticity index, Hardin’s secant shear modulus function
is completely characterized without the need of a tri-axial test.

3.6.2 Poisson ratio development

Poisson ratio may be back calculated from tri-axial test data providing that principal stresses and principal strains are
measured during the test. Reference 1 presents a study showing back-calculated values of Poisson ratio for a sequence
of tri-axial tests with increasing confining pressure. Two significant findings from this study are summarized below.

For each individual tri-axial test with a specified confining pressure, the measured Poisson ratio increases as shear strain
increases. Starting at a low value of approximately 0.01, the measured Poisson ratio asymptotically approaches an upper
limit, nominally equal to 0.49, as the shear strain approaches the shear failure limit.

When confining pressure is increased, the starting and ending values of Poisson ratio remain the same as noted above,
however the rate of increase of Poisson ratio with shear strain increases as confining pressure increases. Said another
way, the measured value of Poisson ratio at a given level of shear strain is inversely related to the confining pressure.
The above two observations are illustrated in Figure 3.6.3-1.
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Figure 3.6.3-1 Illustration of measured Poisson ratio from tri-axial tests.
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Poisson ratio function. A Poisson ratio function that simulates the above two observations is shown below, wherein vy,
is a scaled measure of shear stain.

vV . +v v
= Yonin ™ ¥p Vinax. Equation 3.6-16
1+ Y,
_q .
Yo T Y_ Y Equation 3.6-17

where, V= Poisson ratio function.

Y, = scaled shear strain measure.

Y. = Hardin reference shear strain (= Gmax/C1 from Equation 3.6-8)

and, Vi = Poisson function parameter denoting minimum value (dimensionless constant)

V ax = Poisson function parameter denoting maximum value (dimensionless constant)

q = Poisson function parameter controlling curve shape (dimensionless constant)

Upon inspecting the Poisson ratio function, it is clear that when shear strain is zero, v = vmin, and when shear strain
becomes very large, v = vmax. Thus, the Poisson ratio function satisfies the first observation noted above. The second
observation is achieved by defining y, with Hardin reference strain vy, in the denominator as shown in Equation 3.16-7.
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Since y; is proportional to Gmax and Gmax is an increasing function of confining pressure, y, is reduced for tests with higher
confining pressures so that the Poisson ratio function behaves as illustrated in the above.

It is important to realize that the predicted and observed variation in Poisson ratio as portrayed in Figure 3.6.3-1 is only
for the case of a standard tri-axial loading environment. When Equation 3.6-16 is used to predict the behavior of Poisson
ratio in a uniaxial-strain loading environment (Ko-test), the Poisson ratio prediction remains nearly constant as axial strain
(or shear strain) increases. This is because the steadily increasing confining pressure increases the value of Gnax at nearly
the same rate as the increase in strain so that y, remains nearly constant in accordance with observed behavior.

Parameter identification. The Poisson ratio function requires identifying values for three model parameters, Vmin, Vinax
and q. The study presented in Reference 1 measured Poisson ratio values from five tri-axial tests with confining pressures
ranging from 25 psi to 250 psi. The soil specimens were dry, dense sand, and the model parameters identified as,

v

min — 0,10
Vimax — .49
9-0.26

Choosing values for vmin and vmax are straightforward observations from the experimental data, and the selection of the
shape parameter q is determined by standard curve fitting techniques. The study concludes that the Poisson ratio function
with the above parameter values is in excellent agreement with the measured Poisson ratio data points for all five tri-
axial tests.

Of course, it is always best to conduct tri-axial tests on new soils to identify the parameters of the Poisson ratio function.
However, experience has shown that vmin, Vmax and q are not overly sensitive to the type of soil and soil properties, thus
if no other data is available the above parametric values are fairly reasonable for all soil types.

3.6.3 Summary of extended Hardin soil model functions

The extended Hardin soil model is composed of the secant shear modulus function and the Poisson ratio function both
of which are functions of maximum shear strain and hydrostatic pressure.

The secant shear modulus function is given by the following function and sub functions.

— Gmax = sh . .
. = shear modulus function Equation 3.6-18
I+,
_ o . . . .
Y= —(1 + —) = hyperbolic strain function Equation 3.6-19

Yr exp( l )0A4

r

Y.~ Gmax / Cl = reference shear stain Equation 3.6-20

G~ S,4/0,, = initial shear modulus when shear strain = 0 Equation 3.6-21

where, Y =maximum shear strain

6, = 1/3(6,,+ 6,,1 6,,) = hydrostatic stress (units psi)

and, S1 = soil parameter related to void ratio (units in 4/ Psi )
0. = soil parameter, related to soil type and percent saturation (dimensionless)

Cl = soil parameter related to void ratio, percent saturation, and plasticity index (units psi)
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Parameter identification for C;, S; and a may be accomplished directly with tri-axial tests as outlined in the discussion
associated with Equations 3.6-11 and 3.6-12. Alternatively, the parameters may be quantified by the indirect method
outlined with the discussion associated with Equations 3.6-13, -14, and —15.

The Poisson ratio function is given by the following function and sub functions.

v . +vy Vv
v=— P T = Poisson ratio function Equation 3.6-22

1+yp

Y, = — Y = scaled shear strain measure Equation 3.6-23

where, Y, = Hardin reference shear strain (= Gmax/C1 from Equation 3.6-20)

and, Vi = Poisson function parameter denoting minimum value (dimensionless constant)

V,.x = Poisson function parameter denoting maximum value (dimensionless constant)

( = Poisson function parameter controlling curve shape (dimensionless constant)

Parameter identification for vmin, Vmax and q may be accomplished with tri-axial tests as outlined in the discussion in
Section 3.6.3. If no independent test data is available, the default values, Vmin, = 0.1, vmax = 0.49, and q = 0.26 are
reasonable for all soil types.

The overall behavior of the extended Hardin soil model mimics the actual behavior of soil. The model exhibits a stiffening
behavior when confining pressure dominates shear strain, and conversely a softening behavior when shear strain
dominates confining pressure.

Lastly, it is emphasized the extended Hardin soil model is a nonlinear elasticity model and behaves the same in loading
or unloading. Like the Duncan and Duncan/Selig soil models, additional research needs to be done in order to incorporate
plasticity-like concepts into the model so that unloading behavior can be simulated without violating energy theorems
and continuity principles.

3.6.4 Implementation of Harden model and nonlinear solution strategy

To implement the extended Hardin model into the plane-strain constitutive matrix given by Equation 3.6-1, it is more
convenient to use the bulk modulus function with the shear modulus function (G, B) rather than the Poisson ratio function
(G, v) as was indicated in Table 3.6.1-1. The bulk modulus function is related to the extended Hardin functions by
elasticity identity relationships as,

+
B, = G, M Equation 3.6-24
3(1-2v)

where, BS = secant bulk modulus function

GS = secant shear modulus function (Equation 3.6-18)

V = Poisson ratio function (Equation 3.6-22)

Letting 61, 02, 63 be the total principal stresses and €1, € and &3 the corresponding total principal stains, then, the secant
moduli (Gs, B) relate total stress quantities to total strain quantities as follows.
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=Gy Equation 3.6-25
6,= B Equation 3.6-26

where, T = (0,-05)/2 = maximum shear stress
Y = €,- €; = maximum shear strain
6,,= (0,1 6,1 6,)/3 = mean stress or hydrostatic stress

¢ = g, 1 &, T &; = volumetric strain

Chord moduli representation. To progress from load step i to load step i+1, the moduli must be expressed as
incremental chord moduli, which are related to secant moduli as illustrated in the figures below.

Figure 3.6.5-1  Chord modulus relationship to secant modulus for shear modulus.
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Figure 3.6.5-2 Chord modulus relationship to secant modulus for bulk modulus
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The incremental relationships between load steps i and i+1 as portrayed in the above figures are defined below.

At=G Ay Equation 3.6-27
Ac, =B A¢ Equation 3.6-28

Gs(i+1)Yi+l -
Yin= Vi

G, = Equation 3.6-29

Bs(i+1)(Pi+1 = O

Oiv- @4

B.=

Equation 3.6-30

where, G .= chord shear modulus from load step i to i+1
B, = chord bulk modulus from load step i to i+1

At = T;.;- T; = shear stress increment

Ay = Yis1~ Y; = shear strain increment

Ac = O sy~ Om = Mean stress increment

Ap = (®;,,- ¢; = volumetric strain increment.

Nonlinear solution strategy. The solution strategy is based on a direct iterative approach, also called trial and error.
We begin with the understanding that we have a converged solution at load step i so that we know the total stress and
total strain state, i and g;, respectively. Our objective is to advance the solution to load step i+1 following the steps
below.
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To obtain the first trial solution, assume the values for G. and B, remain the same as they were for load step i for each
individual element.

Construct the element stiffness matrix using G, and B, to define the current constitutive matrix for each element (Equation
3.6-1)

Assemble the global stiffness matrix and load increment vector for step i+1. Solve the system for a trial solution and
recover current estimates for increments of stress and strain vectors. Update trial vectors for total stress and strain as
indicated below.

A€ = incremental strain vector determined from strain-displacement relationship.

AG = incremental stress vector determined from current constitutive matrix

Based on the known stress-strain state at step i and the estimated stress-strain state at step i+1, compute new estimates
for G. and B..

GiYiim T
G, = EDT T (see Equation 3.6-18)
Yier™ Vi
Bg 1) Pi+1™ O
B,= (i) Yit ® (see Equations 3.6-18, -22, -24)

Pivi- O

If G and B, computed in the last step are sufficiently close to the previous estimates, say within 1% difference, then the
load step has converged, the solution is saved, and control shifts back to step 1 to advance to the next load step. Otherwise,
the iterative process continues wherein the incremental solution is discarded and control shifts back to step 2 to repeat
the load increment using the new values for G, and B. to get a new trial solution.

Typically, the above algorithm converges for all elements in three to ten iterations for each load step, depending on the
scope of the problem. Convergence means that static equilibrium and the constitutive matrix are simultaneously satisfied.
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3.7 Mohr/Coulomb Plasticity Model with Tension Cutoff

3.7.1 Pros and Cons of Mohr/Coulomb Model

The classical Mohr/Coulomb elastic-perfectly plastic constitutive model is often used by geotechnical engineers to
simulate soil shear-failure when analyzing soil-structure systems such as in-situ soil beneath footings and walls. The use
of this classical model is supported by popular commercial finite programs such as ABAQUS, NASTRAN and FLAX3D,
which recommend the use of the Mohr/Coulomb elastic-perfectly plastic model for soil-structure analysis. An inherent
attribute of the plasticity formulation is that it includes permanent deformation when unloading from the plastic domain
as opposed to nonlinear elasticity models that retrace the same load/unload path. In spite of these attributes, the classical
Mohrt/Coulomb plasticity model is less than ideal because it predicts shear failure to occur as an abrupt, rather than a
gradual, phenomena as observed in most soils used for backfill. Another shortcoming is that the model does not exhibit
increasing stiffness with increased confining pressure as generally observed in soils.

In contrast, the Duncan/Selig soil model captures the entire suite of observed soil behavior for all loading environments.
Moreover, the Katona modified form of the Duncan/Selig model also captures the linear-like unload/reload response of
soils similar to plasticity models. For the record, the finite element program PLAXIS offers a sophisticated plasticity-
based hardening model whose hardening rule was developed to mimic the Duncan/Selig variable-modulus model under
loading conditions (Reference 30). Accordingly, the Modified Duncan/Selig model and the PLAXIS hardening soil
model are judged equivalent for loading and unloading environments and are well suited for modeling the backfill soil
around culverts.

Irrespective of the limitations of the classical Mohr/Coulomb model to simulate the full range of soil behavior, this section
is devoted to the development of the Mohr/Coulomb model and its implementation in the CANDE-2022 program.
Although it is generally recommended to use the Duncan/Selig model to represent fill-soil behavior, the motivation for
developing and offering the classical Mohr/Coulomb constitutive model is threefold:

1. Some in-situ soils such as stiff clays are well represented by the Mohr/Coulomb model.

2. Since some finite element programs are limited to the classical Mohr/Coulomb plasticity soil model,
it is convenient to include the model in CANDE in order to make direct comparisons.

3. Materials other than soils, such as metals, are well represented by the Tresca form of the
Mohr/Coulomb model (¢ = 0).

With the above understanding, the Mohr/Coulomb plasticity model as offered in CANDE is developed in the following
paragraphs. The last section provides a comparison of the performance of the Mohr/Coulomb and the Duncan/Selig soil
models with experimental data for Cooks Bayou sand in tri-axial, hydrostatic and confined compression loading
environments.

3.7.2 Basic Plasticity Concepts

From a one-dimensional view point the Mohr-Coulomb model may be viewed as an elastic spring in series with a plastic
slider that is abruptly activated when the shear stress exceeds a stress dependent limit as depicted in Figure 3.7.1-1 below.

Figure 3.7.2-1. One dimensional analogue of Mohr/Coulomb elastic-plastic model
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As illustrated, the total strain is the sum of the elastic and the plastic parts. Since the elastic spring and the plastic slider
are in series, they experience the same stress; therefore, stress is always equal to the elastic stiffness times the elastic
strain, not the total strain. When the stress level exceeds the activation limit of the plastic slider, slipping deformation
occurs, thereby causing plastic strain, which adds to elastic strain to form the total strain. These basic concepts apply to
the two-dimensional plane formulation developed below.

3.7.3 Stress and Strain Components for Plane Strain Plasticity
For two-dimensional plane strain, the elastic and plastic strains are expressed as incremental vectors wherein the total

incremental strain is sum of the two increments as expressed below.

Ag =Ag + Agp Equation 3.7-1a

Or equivalently, the above equation may be written in expanded vector notation for an x-y coordinate system as shown
below.

Ag_ Ag_ Ag_
Ae, | = | Ag, | + | Ag, ' Equation 3.7-1b
Ay Ay ). Ay ),

where the following symbols are used throughout this development.

A = an incremental quantity (small load step)
e = vector subscript denoting elastic response
p = vector subscript denoting plastic response
€x, €y, Y = normal X, y and shear strain components
Oy, Oy, T = normal X, y and shear stress components

The elastic stress-strain relationship for isotropic materials is expressed below in compact vector notation and re-
expressed in expanded notation for plane-strain geometry. Note these equations relate the total stress increment to the
elastic strain increment by a linear relationship that is persistently valid irrespective of plastic deformation.

Ac = I_)eA§e Equation 3.7-2a

Or equivalently in expanded notation,

Ao, D, D, 0 }\[Ae,
Ac, |=|D, D, 0 | Aeg Equation 3.7-2b
At 0 0 DjjlAy

Components of the elastic constitutive matrix D, (i.e., D11, D12, and D33) may be defined by any convenient pair of
elasticity parameters as shown in Table 3.7.3-1, which remain constant for all stress and strain increments.

The last row in the table shows constraints for the elasticity parameters in order that thermodynamic restrictions are

satisfied (e.g., positive definite matrix). This development uses the parameters Young’s modulus E and Poisson ratio v
for the linear elastic formulation.
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TABLE 3.7.3-1. Popular pairs of elastic parameters for constitutive matrix.

Elastic matrix M = Confined mod. | E = Young’s mod B = Bulk mod. E = Young’s mod.
component Ko = Lateral coeff. v = Poisson ratio G = Shear mod. B = Bulk mod.
Du= M E(1- v)/(1+v)(1-2 v) B+ (4/3)G B(9B+3E)/(9B-E)
D= M Ko Ev/(1+v)(1-2v) B-(2/3)G 3B(3B-E)/(9B-E)
D33 =(D1- Do)/2 = M(1-Ko)/2 E2(1+v) G 3EB/(9B-E)
Constraints M>0 E>0 B>0 E>0
0<Ko =<1 0<v <12 0<G<(3/2)B E/3<B<w

3.7.4 Plastic failure surface of Mohr/Coulomb Model

The classical Mohr/Coulomb formulation employs a non-hardening yield surface equivalently called the failure surface.
Like the Tresca failure criterion that is defined by a maximum shear stress “c”, the Mohr/Coulomb failure surface is also
a shear-based failure criterion; however, shear strength increases linearly with the compressive normal stress acting on
the failure plane. This concept is like the theory of Coulomb friction, which linearly increases sliding resistance in
proportion to the compressive normal force. The Mohr-Coulomb shear strength equation is shown below and depicted in
Figure 3.7.4-1. Note that the development follows the standard sign convention wherein positive normal stresses are in

tension and negative stresses are in compression.

1 =C-o tang

where,

Tmax = absolute maximum achievable shear stress

C = cohesion of material (stress units, user defined)
¢ = angle of internal friction (radians, user defined)
on = normal stress on plane of failure (negative stress is compressive)
Tcut = Tension cutoff (tensile stress, user defined)

Figure 3.7.4-1 Mohr/Coulomb failure surface in (on, T) stress space.

Shear Stress T

Equation 3.7-3

Normal stress o,
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3.7.4.1 Mohr/Coulomb Yield Function

The yield function is a measure of how close the normal and shear stress components (o, T) are to the
failure surface and is defined as:

F(o,,7)=|t|+0,tang—C  (Yield function) Equation 3.7-4

Here it is understood that 6, and 1 are acting in a rotated coordinate system that minimizes the absolute value of the yield
function as illustrated by the stress point (oy, T) in Figure 1. Evaluating the yield function for any stress point (cn, T) has
three possibilities listed below.

F(Gn aT) <0 Stress state is inside failure surface (elastic zone)
F(Un ,T) =0 Stress state is on failure surface (plastic zone)

F(Gn ,T) >0 Stress state is above failure surface (plastic failure, producing large plastic strains)

By making use of Mohr-circle transformations, the normal and shear stress components (o,, T) may be expressed in terms
of the x-y stress state (ox, Oy, Txy) by the equations,

1 . .
G,= 5((5x +6,) + Rsing Equation 3.7-5
T = Rcosop Equation 3.7-6
2
Gx - Gy 2 . .
where, R = > + Ty = radius of the Mohr circle.

Thus, the yield function (Equation 3.7-4) may be equivalently expressed in x-y stress components as,

R o, +Gy
F(o,,0,,1,,) = + tang - C Equation 3.7-7
cos¢ 2

When a stress vector ¢ moves from one point on the failure surface, F = 0, to a neighboring point ¢ + Ag on the failure
surface, we still must have F + AF = 0. Thus, it is evident that AF must also equal zero. This is called the consistency
requirement and is expressed as,

AF=n"Ac =0 Equation 3.7-8
n, OF | 0o, (0,-0,)/4Rcos¢ + (tang)/2
where, D= |n | = |0F/do, |=|—(0,-0,)/4Rcos¢ + (tang)/2 E